PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified Bohm’s theory for abstruse measurements: application to layer depth profiling using auger spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modified Bohm’s formalism was applied to solve the problem of abstruse layer depth profiles measured by the Auger electron spectroscopy technique in real physical systems. The desorbed carbon/passive layer on an NiTi substrate and the adsorbed oxygen/surface of an NiTi alloy were studied. It was shown that the abstruse layer profiles can be converted to real layer structures using the modified Bohm’s theory, where the quantum potential is due to the Auger electron effect. It is also pointed out that the stationary probability density predicts the multilayer structures of the abstruse depth profiles that are caused by the carbon desorption and oxygen adsorption processes. The criterion for a kind of break or "cut" between the physical and unphysical multilayer systems was found. We conclude with the statement that the physics can also be characterised by the abstruse measurement and modified Bohm’s formalism.
Słowa kluczowe
Twórcy
  • University of Silesia, Institute of Materials Science, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
  • University of Silesia, Faculty of Biology and Environment Protection, Jagiellońska 32, 40-032 Katowice, Poland
Bibliografia
  • [1] D. Briggs, M. P. Seah. Practical Surface Analysis. New York (NY). Wiley 1990.
  • [2] D. Chattarji, The Theory of Auger Transitions. London, Academic Press 1976.
  • [3] D. A. McQuarrie, Mathematical Methods for Scientists and Engineers. Warsaw: PWN; 2005.
  • [4] L. Debnath, P. Mikusinski, Introduction to Hilbert Spaces with Applications. New York (NY), Academic Press 1999.
  • [5] S. Hofmann, Sputter depth profile analysis of interfaces. Rep. Prog. Phys. 61, 827-888 (1998).
  • [6] M. Menyhard, A. Sulyok, Auger electron spectroscopy depth profiling of Ge/Si multilayers using He+ and Ar+ ions. J. Vac. Sci. & Tech. A: Vacuum, Surface, and Films 16 (3), 1091-1095 (1998).
  • [7] I. S. Tilinin, Escape probability of Auger electrons from noncrystalline solids: Exact solution in the transport approximation. Phys. Rev. B 46, 137-39 (1992).
  • [8] P. H. Holloway, T. D. Bussing, Quantitative surface analysis of layered materials. Surf. Inter. Analysis 18, 251-256 (2004).
  • [9] E. Rówiński, C. Syska, E. Łągiewka, Investigation of speed of ionic sputtering of NiTi alloys in SEA 02 Auger spectrometer. Proceedings of Conference on Appled Crystalography; 9-12 1992 August. Cieszyn, Poland, World Scientific Publishing 1993.
  • [10] E. Rówiński , Application of the Cini model to the oxygen chemisorption on the TiNI alloy surface in the air at room temperatures. Surf. Sci. 411, 316-320 (1998).
  • [11] E. Rówiński, Observation and interpretation of the Auger spectrum from chemisorption during reactive implantation of nitrogen on the surface of a NiTi alloy. Vacuum 63, 37-42 (2001).
  • [12] E. Rówiński, E. Łągiewka, Cini,s models in studies of carbon and oxygen chemisorption on the TiNi allys surface. Vacuum 54, 37-40 (1999).
  • [13] D. Bohm, Hiley BJ. Unbroken quantum realism, from microscopic to macroscopic levels. Phys. Rev. Lett. 55, 2511 (1985).
  • [14] Hubbard J. Electron correlations in narrow energy bands III. An improved solution. Proceedings of the Royal Society of London Series A. 281 (1386), 401-419 (1964).
  • [15] M. Acquarone, D. K. Ray, J. Spalek, The Hubbard sub-band structure and the cohesive energy of narrow band systems. J. Phys. C: Solid State Phys. 15, 959-968 (1982).
  • [16] B. I. Dunlap, F. L. Hutson, D. E. Ramarker, Auger lineshapes of solid surfaces-atomic, bandlike. Something else? J. Vac. Sci. Technol. 18, 556-560 (1981).
  • [17] M. Matlak, M. Pietruszka, E. Rówiński, Experimental method to detect phase transition via the chemical potential. Phys. Rev. B. 63, 52101-62103 (2001).
  • [18] M. Matlak, M. Pietruszka, E. Rówiński, Localzation of critical temperature by means of the chemical potential measurement. Phys. Stat. Sol. (a). 184 (2), 335-339 (2001).
  • [19] E. Rówiński, Assignment of quantum number for plasmon energies in carbon layer systems. Applied Surface Science 255, 5881-5884 (2009).
  • [20] M. Pietruszka, M. Olszewska, Ł. Machura, E. Rówiński, Single measurement detection of individual cell ionic oscillations using an n-type semiconductor – electrolyte interface. Scientific Reports [Nat. Publ. Group]. 8 (7875), 1-7 (2018).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3845c973-b9a0-4254-85d2-6efdfaec3338
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.