

ANDRZEJ JANOWSKI TPA sp. z o.o. Andrzej.janowski@tpaqi. com

SZYMON SAREK TPA sp. z o.o. Szymon.sarek@tpaqi. com

Skuteczność przenoszenia obciążeń – zalecenia przy pomiarach na nawierzchniach podatnych i półsztywnych

W numerze 2 z 2019 r. "Drogownictwa" opublikowano artykuł dotyczący nietypowego wykorzystania pojęcia skuteczności przenoszenia obciążenia między fragmentami spękanej nawierzchni podatnych lub półsztywnych [1]. Badanie tego parametru wykonuje się mierząc ugięcie nawierzchni po obydwóch stronach szczeliny pod ugięciem dynamicznym. Ze względów technicznych punkty pomiaru są od siebie oddalone, a zatem uwzględniając na krzywiznę nawierzchni pod obciążeniem nawet przy doskonałej

współpracy jej fragmentów, stosunek ugięć nie będzie równy 1. Jednym z warunków poprawnej oceny parametru jest uwzględnienie krzywizny czaszy ugięcia. Bez tej korekty trudno odnosić się do klasyfikacji w rodzaju tej, którą zaproponowano w Załączniku D 9 katalogu przebudów i remontów [2]. Autorzy niniejszego artykułu postawili tezę, że w pewnych warunkach prawidłowe wyznaczenie współczynnika korekty z wykorzystaniem urządzeń typu FWD/HWD, może być znacznie prostsze niż zalecane to jest w [7] lub instrukcji do programu Elmod (Dynatest). Celem badania jest też sprecyzowanie warunków, w jakich dodatkowy pomiar referencyjny powinien być wykonywany.

Metodologia wykonania pomiaru

Jeszcze w latach czterdziestych XX wieku Westergaard zaproponował współczynnik efektywności przenoszenia obciążenia, j, zdefiniowany równaniem (1) [3].

$$d_l - d_u = (1 - j) \cdot (d_l^* - d_u^*)$$
(1)

w którym:

*d*_l i *d*_u są ugięciami przylegających krawędzi obciążonego i nieobciążonego fragmentu nawierzchni,

 d_l^* i d_u^* są ugięciami jakie pojawiłyby się, gdyby przenoszenie obciążenia nie występowało.

W praktyce zastosowanie wzoru (1) jest niemożliwe, a więc realizacja badania sprowadza się do zmierzenia ugięć w pewnym oddaleniu od krawędzi, a wzór (1) zastępowany jest wzorem (2) lub innym równoważnym. W skrajnych przypadkach doskonałego i bardzo złego przenoszenia obciążenia, wzory (1) i (2) dają zbieżne wyniki (1 i d_u/d_l). Mamy zatem do czynienia z pewną estymacją wartości *j*, d_u oraz d_l , oznaczanymi dalej jako LTE_{δ} , D_u i D_l . Ostatecznie, wykonując korektę geometryczną [7] (lub korzystając z np. z programu Elmod), zastosowanie znajduje wzór (3), gdzie współczynnikiem korekcyjnym jest wyrażenie D_{lM} / D_{uM} . Potrzeba korekty sprawia, że wymagany jest pomiar referencyjny, korygujący wartość wynikającą z pomiaru przy szczelinie pęknięcia.

$$LTE_{\delta} = \frac{D_u}{D_l} \cdot 100\%$$
 (2)

$$LTE_{\delta} = \frac{D_{uJ}}{D_{lJ}} \cdot \frac{D_{lM}}{D_{uM}} \cdot 100\%$$
(3)

oznaczenia: indeks *J* odnosi się do pomiaru ugięcia w pobliżu szczeliny,

indeks M do pomiaru referencyjnego.

W przypadku nawierzchni sztywnej, która jest podzielona na płyty, zaleca się, by pomiar referencyjny był wykonany na środku płyty. W przypadku nawierzchni podatnych i półsztywnych autorzy [1] piszą o pomiarze "*w pewnej odległości* (2–3 *m*) od pęknięcia". Pomiar referencyjny jest istotnym utrudnieniem badań, warto więc sprawdzić co oznacza "pewna odległość". Sprowadza się to do ustalenia, kiedy zanika wpływ swobodnej krawędzi fragmentu nawierzchni na kształt czaszy ugięcia.

Analiza ugięć spękanych nawierzchni podatnych i półsztywnych

Badanie wykonano prowadząc obliczenia metodą elementów skończonych, przyjmując uproszczony dwuwarstwowy model nawierzchni, dotyczący konstrukcji zalecanych przez katalog typowych konstrukcji [4] dla kategorii ruchu KR4–KR7. Ponieważ w rzeczywistości zarówno grubości nawierzchni, jak i właściwości mechaniczne wbudowanych materiałów mają losowy rozrzut w pewnych granicach, obliczenia wykonano stosując metodę Monte Carlo [5], losując wartości parametrów do obliczeń według rozkładu beta [6].

Rozważane katalogowe konstrukcje wraz z zakresami zmienności grubości i modułów sprężystości warstw, determinującymi parametry rozkładu beta, przedstawiono w ta-

Kat. ruchu	Parametr rozkładu	h1, cm	E1, MPa	h2, cm	E2, MPa	h3, cm	E3, MPa	E4, MPa	Typ konstruk- cji
		+5 –10%	±2000	+5 –10%	±50	+5 –10%	±30	±20	
KR4	min	23.40	7 800	13.50	350	21.60	70	30	TYP 9 + TYP B
	moda	26.00	9 800	15.00	400	24.00	100	50	
	max	27.30	11 800	15.75	450	25.20	130	70	
KR5	min	27.00	7 800	15.30	350	40.50	90	30	TYP 4 + TYP B
	moda	30.00	9 800	17.00	400	45.00	120	50	
	max	31.50	11 800	17.80	450	47.25	150	70	
KR6	min	30.60	7 800	15.30	350	40.50	90	30	TYP 4 + TYP B
	moda	34.00	9 800	17.00	400	45.00	120	50	
	max	35.70	11 800	17.80	450	47.25	150	70	
KR7	min	32.00	7 800	15.30	350	40.50	90	30	TYP 4 + TYP B
	moda	36.00	9 800	17.00	400	45.00	120	50	
	max	38.00	11 800	17.80	450	47.25	150	70	
KR4	min	16.20	7 800	19.80	7000	21.60	70	30	TYP 9 + TYP C
	moda	18.00	9 800	22.00	7200	24.00	100	50	
	max	18.90	11 800	23.10	7400	25.20	130	70	
KR5	min	18.00	7 800	19.80	7000	40.50	90	30	TYP 4 + TYP C
	moda	20.00	9 800	22.00	7200	45	120	50	
	max	21.00	11 800	23.10	7400	47.25	150	70	
KR6	min	19.80	7 800	21.60	7000	40.50	90	30	TYP 4 + TYP C
	moda	22.00	9 800	24.00	7200	45	120	50	
	max	23.10	11 800	25.20	7400	47.25	150	70	
KR7	min	21.60	7 800	21.60	7000	40.50	90	30	TYP 4 + TYP C
	moda	24.00	9 800	24.00	7200	45	120	50	
	max	25.20	11 800	25.20	7400	47.25	150	70	

Tabela 1. Parametry warstw nawierzchni podatnych i półsztywnych według katalogu typowych konstrukcji [4] oraz zakres zmienności ich wartości

beli 1, natomiast wynikające stąd rozkłady są zilustrowane na rysunku 1 i 2.

Kształt czaszy ugięcia wyznaczano umieszczają płytę naciskową w kilkunastu odległościach od krawędzi fragmentów nawierzchni, rozdzielonych pęknięciem. Układ obliczeniowy, tj. siatkę dla metody elementów skończonych i lokalizacje płyty naciskowej, przedstawiono na rysunku 3.

Analizie podlegały ugięcia w punktach położonych symetrycznie względem płyty naciskowej, są one oznaczone na rysunku 3 jako D_{fJ} i D_{cJ} oraz D_{fM} i D_{cM} . Stosunek wartości par ugięć informuje o pochyleniu czaszy ugięcia po obydwóch stronach płyty naciskowej. Symetria pochyleń oznacza brak wpływu swobodnej krawędzi.

Przy każdej lokalizacji płyty wykonano 20 losowań parametrów konstrukcji, tj.

- E3 (KR4) -

–E3 (KR5-KR6)

—— Eg

E1

E2 (pod.) —

— E2 (półszt.)

Rys. 1. Rozkłady grubości warstwy 1 dla nawierzchni podatnej i półsztywnej

Rys. 2. Rozkłady modutu sprężystości górnych i dolnych warstw nawierzchni oraz podłoża gruntowego

Rys. 3. Układ obliczeniowy. Ugięcia w granatowych i czerwonych punktach (pokazano tylko w skrajnych potożeniach płyty naciskowej) są wskaźnikami asymetrii ugięcia nawierzchni. Ugięcia w punktach położonych symetrycznie względem płyty naciskowej są oznaczone jako D_{fJ} i D_{cJ} oraz D_{fM} i D_{cM}

grubości warstw i modułów sprężystości, przy czym najbardziej prawdopodobną wartością każdego z parametrów była wartość zalecana przez katalog typowych konstrukcji dla danej kategorii ruchu. Dzięki statystycznemu podejściu możliwe było wyznaczenie przedziałów błędu prezentowanej analizy, wynikającego z niedoskonałości rzeczywistej nawierzchni (odchyleń od projektowych grubości i modułów sprężystości warstw konstrukcyjnych).

Przykładowy wynik obliczeń dotyczący jednej konstrukcji nawierzchni przedstawiono na rysunku 4. Kształt obliczonej czasy ugięcia ulega znamiennej metamorfozie, gdy moduł sprężystości maleje od wartości 7200 MPa, charakteryzującej podbudowę z stabilizacji cementem $C_{4/5}$, nie spękanej do postaci bloków, do wartości 400 MPa, charakterystycznej dla wysokiej jakości podbudowy niezwiązanej.

Na nawierzchni półsztywnej obserwuje się symetrię ugięcia niezależnie od odległości miejsca przyłożenia obciążenia do krawędzi pęknięcia. W miarę zmniejszania się modułu sprężystości podbudowy, na skutek pękania stopniowo na duże, a następnie małe bloki, wspomniana symetria zaniciążanego zbiegają się do wartości właściwej dla ugięcia danej konstrukcji, niezaburzonego obecnością brzegów. W przykładzie przedstawionym na rysunku 5 $D_{\rm 200}/D_{\rm 300}$ wynosi 1.015.

Rys. 4. Przykłady czasz ugięcia nawierzchni półsztywnej i podatnej (ruch KR4), w przypadku gdy płyta naciskowa odsuwana jest od krawędzi, jak pokazano na rysunku 3. Przedziały niepewności (odchylenie standardowe) przedstawiono dla dwóch skrajnych lokalizacji nacisku

ka. W skrajnym przypadku nawierzchni podatnej, asymetria czaszy przy obciążeniu w pobliżu krawędzi staje się wyraźna. Przykładową ilościową ilustrację asymetrii czaszy ugięcia przedstawiono na rysunku 5.

Za parametr charakteryzujący nachylenie czaszy ugięcia przyjęto iloraz ugięć D_c/D_f mierzonych w odległościach odpowiednio c = 200 i f = 300mm od środka obszaru. do którego przykładany jest nacisk. Zmiany kształtu czaszy widoczne na rysunku 4, wyrażone za pomocą D_c/D_f , ujawniają się w postaci dwóch rozdzielnych gałęzi, które w miare oddalania od krawędzi obszaru obW celu przedstawienia w sposób zagregowany i porównywalny wyników dotyczących wszystkich nawierzchni wprowadzono parametr symetrii *F*:

$$F = \frac{D_{cJ}/D_{fJ}}{D_{cM}/D_{fM}} \tag{4}$$

w którym:

 D_{fJ} i D_{cJ} oraz D_{fM} i D_{cM} – ugięcia w punktach położonych symetrycznie względem płyty naciskowej. Znaczenie zmiennych we wzorze (4) wyjaśniono na rysunku 3.

Wartość *F* bliska 1 oznacza symetrię czaszy ugięcia, wartości mniejsze od 1 świadczą o tym, że ugięta powierzchnia jest bardziej płaska, lub wręcz opada w kierunku do krawędzi pęknięcia, niż w obszarze oddalonym od krawędzi. Symetria z punktu widzenia prostoty pomiarów jest sytuacją pożądaną, oznacza bowiem, że do wyznaczania współczynnika korekty geometrycznej można wykorzystywać czujniki ugięcia znajdujące się po obydwóch stronach płyty naciskowej, a zatem w przedstawionej sytuacji wystarczający jest pojedynczy pomiar ugięć.

Rys. 6. Parametry asymetrii dotyczące nawierzchni podatnych

Rys. 7. Parametry asymetrii dotyczące nawierzchni półsztywnych

Zaprezentowane na rysunkach 6 i 7 wyniki dowodzą, że wpływ swobodnej krawędzi na kształt czaszy ugięcia jest widoczny na nawierzchniach podatnych, gdy płyta naciskowa umieszczana jest w odległości do 110 cm od pęknięcia. W większych odległościach ugięcie w pobliżu miejsca nacisku staje się symetryczne i wobec tego można tam dokonywać pomiaru referencyjnego.

"Drogownictwo" 7-8/2019

Na nawierzchniach sztywnych wpływ swobodnej krawędzi zanika znacznie szybciej i praktycznie umiejscowienie płyty naciskowej najbliżej krawędzi, jak to jest technicznie wykonalne, umożliwia pomiar jednocześnie na obydwóch krawędziach pęknięcia oraz referencyjny po drugiej stronie płyty naciskowej.

Wnioski

- 1. Na nawierzchniach półsztywnych, jako pomiar referencyjny można wykorzystać dane z czujników położonych symetrycznie względem płyty naciskowej do czujników mierzących ugięcia po obydwóch stronach pęknięcia pod warunkiem upewnienia się, że wskazania tych czujników są zgodne. Postępowanie takie wymaga aktualnej kalibracji względnej, której procedurę opisano np. w [8] oraz instrukcje obsługi konkretnych urządzeń pomiarowych. Szczególną uwagę należy zachować na zdegradowanych nawierzchniach półsztywnych, które mogą być takie już tylko nominalnie. Faktyczny status należy wcześniej skontrolować np. poprzez wyznaczenie modułu podbudowy. Ponieważ weryfikacja rodzaju konstrukcji nie jest w praktyce możliwa w terenie, a rzadko zdarza się, że z badaniem LTE wkracza się na wcześniej przebadaną nawierzchnię, w sytuacji budzącej wątpliwości należy zalecić postępowanie opisane w punkcie 2, to znaczy wykonać pomiar referencyjny.
- Na nawierzchniach podatnych nie można uniknąć dodatkowego pomiaru referencyjnego, należy odsunąć się z nim na odległość co najmniej 110 cm od krawędzi pęknięcia. Należy wówczas wykorzystywać te same czujniki, którymi mierzono ugięcia po obydwóch stronach pęknięcia nawierzchni.
- Grubość konstrukcji (czyli kategoria ruchu, dla której droga jest przeznaczona) ani błędy wykonawcze nie mają istotnego znaczenia dla sposobu postępowania, ponieważ współczynnik zmienności parametru symetrii zawiera się w przedziale 1,4 – 2,0%.

Bibliografia

- A. Janowski, K. Pełczyńska, Skuteczność przenoszenia obciążeń

 jak mierzyć, jak wykorzystywać na nawierzchniach podatnych
 i półsztywnych, "Drogownictwo" 2/2019.
- [2] Katalog Przebudów i Remontów Nawierzchni Podatnych i Półsztywnych, GDDKiA, IBDiM, 2013.
- [3] P. Ullidtz, *Pavement Analysis*, Development in Civil Engineering 19, Elsevier, 1987.
- [4] Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych, GDDKiA, 2014.
- [5] N. Metropolis, S. Ulam, *The Monte Carlo Method*, Journal of the American Statistical Association, 44(247), 1949.
- [6] R. Davis, Teaching Project Simulation in Excel Using PERT-Beta Distributions, INFORMS Transactions on Education 8(3), 2008.
- [7] S. N. Shoukry, G. W. William, Evaluation of Load Transfer Efficiency Measurement, West Virginia University Report No. WVU-2002-04, 2005.
- [8] Use of Falling Weight Deflectometers in Pavement Evaluation, 2nd Edition, European Cooperation in the Field of Scientific and Technical Research COST 336, 2005.