PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ataki na urządzenia mobilne i metody ich wykrywania

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Attacks on mobile devices and methods of detection
Języki publikacji
PL
Abstrakty
PL
Indywidualna ochrona systemów autonomicznych z wykorzystaniem prostej analizy przesyłanych komunikatów staje się niestety niewystarczająca. Istnieje wyraźna potrzeba stworzenia nowych rozwiązań wykorzystujących dane z wielu źródeł, integrujących różne metody, mechanizmy ialgorytmy, w tym techniki przetwarzania Big Data i klasyfikacji danych wykorzystujące metody sztucznej inteligencji. Ilość, jakość, wiarygodność i aktualność danych i informacji o sytuacji w sieci oraz szybkość ich przetwarzania decydują o skuteczności ochrony. W pracy prezentowane są przykłady wykorzystania technik sztucznej inteligencji do wykrywania ataków na systemy teleinformatyczne. Uwaga koncentruje się na zastosowaniu metod uczenia maszynowego do detekcji złośliwych aplikacji instalowa-nych na urządzeniach mobilnych. Skuteczność przedstawionych rozwiązań została potwierdzona przez liczne eksperymenty symulacyjne przeprowadzone na rzeczywistych danych. Uzyskano obiecujące wyniki.
EN
Individual protection of autonomous systems using simple analysis of transmitted messages is unfortunately becoming insufficient. There is a clear need for new solutions using data from multiple sources, integrating various methods, mechanisms and algorithms, including Big Data processing and data classification techniques using artificial intelligence methods. The quantity, quality, reliability and timeliness of data and information about the network situation, as well as the speed of its processing, determine the effectiveness of protection. The paper presents examples of the application of various artificial intelligence techniques for detecting attacks on ICT systems. Attention is focused on the application of deep learning methods for the detection of malicious applications installed on mobile devices. The effectiveness of the presented solutions was confirmed by numerous simulation experiments conducted on real data. Promising results were obtained.
Rocznik
Strony
95--107
Opis fizyczny
Bibliogr. 18 poz., tab.
Twórcy
  • Zespół Złożonych Systemów, Instytut Automatyki i Informatyki Stosowanej, Wydział Elektroniki i Technik Informacyjnych, Politechnika Warszawska
autor
  • Wydział Elektroniki i Technik Informacyjnych, Politechnika Warszawska
Bibliografia
  • 1. Aggarwal Ch.C., Neural Networks and Deep Learning, Cham 2018.
  • 2. Arshad S., Khan A., Mansoor A., Shah M., Android Malware Detection and Protection: A Survey, „International Journal of Advanced Computer Science and Applications” 2016, t. 7, nr 2.
  • 3. Gupta N., Chatterjee P., Choudhury T., Smart and Sustainable Intelligent Systems, 2021, Scrivener Publishing LLC, Wiley Online Library.
  • 4. Khraisat A. i in., Survey of Intrusion Detection Systems: Techniques, Datasets and Challenges, „Cybersecurity” 2019, t. 2, nr 20.
  • 5. Krajobraz bezpieczeństwa polskiego Internetu. Raport roczny z działalności CERT Polska 2021, War¬szawa 2022.
  • 6. Litka R., Detekcja złośliwych aplikacji na urządzenia mobilne z wykorzystaniem uczenia maszynowego, Warszawa 2021.
  • 7. Mobile security report 2021, Izrael 2022.
  • 8. Neshenko N. i in., Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations, „IEEE Communications Surveys & Tutorials” 2019, t. 21, nr 3.
  • 9. Ren Z. i in., End-to-End Malware Detection for Android IoT Devices Using Deep Learning, „Ad Hoc Networks” 2020, t. 101.
  • 10. Rodríguez E. i in., A Survey of Deep Learning Techniques for Cybersecurity in Mobile Networks, „IEEE Communications Surveys & Tutorials” 2021, t. 23, nr 3.
  • 11. Shishkova T., Kivva A., Mobile malware evolution 2021, 21 Feb 2022, https://securelist.com/mobile-malware-evolution-2021/105876/ [dostęp: 10.01.2023].
  • 12. Szynkiewicz P., Kozakiewicz A., Design and Evaluation of a System for Network Threat Signatures Generation, „Journal of Computational Science” 2017, t. 22.
  • 13. Uddin M. i in., Signature-based Multi-Layer Distributed Intrusion Detection System Using Mobile Agents, „International Journal of Network Security” 2013, nr 15, s. 97–105.
  • 14. Usman M. i in., A Survey on Representation Learning Efforts in Cybersecurity Domain, „ACM Computing Surveys” 2019, t. 52.
  • 15. Wang W., Wuy W., Online Detection of Network Traffic Anomalies Using Degree Distributions, „International Journal of Communications, Network and System Sciences” 2010, nr 3, s. 177–182.
  • 16. Zhang Z. i in., Artificial Intelligence in Cyber Security: Research Advances, Challenges, and Opportunities, „Artificial Intelligence Review” 2022, t. 55.
  • 17. Zhou H. i in., A Worm Detection System Based on Deep Learning, „IEEE Access” 2020, t. 8.
  • 18. Zhuge Yu M. i in., A Survey of Security Vulnerability Analysis, Discovery, Detection, and Mitigation on IoT Devices, „Future Internet” 2020, t. 12, nr 2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-383ec245-b7fd-460d-9166-d3f7ae7a3d21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.