PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cooperative adaptive driving for platooning autonomous self driving based on edge computing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cooperative adaptive cruise control (CACC) for human and autonomous self-driving aims to achieve active safe driving that avoids vehicle accidents or traffic jam by exchanging the road traffic information (e.g., traffic flow, traffic density, velocity variation, etc.) among neighbor vehicles. However, in CACC, the butterfly effect is encountered while exhibiting asynchronous brakes that easily lead to backward shock-waves and are difficult to remove. Several critical issues should be addressed in CACC, including (i) difficulties with adaptive steering of the inter-vehicle distances among neighbor vehicles and the vehicle speed, (ii) the butterfly effect, (iii) unstable vehicle traffic flow, etc. To address the above issues in CACC, this paper proposes the mobile edge computing-based vehicular cloud of the cooperative adaptive driving (CAD) approach to avoid shock-waves efficiently in platoon driving. Numerical results demonstrate that the CAD approach outperforms the compared techniques in the number of shock-waves, average vehicle velocity, average travel time and time to collision (TTC). Additionally, the adaptive platoon length is determined according to the traffic information gathered from the global and local clouds.
Rocznik
Strony
213--225
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, 123 University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, Republic of China
  • Department of Computer Science and Information Engineering, National Chung Cheng University, 168, University Rd., Sec. 1, Minhsiung, Chiayi 62102, Taiwan, Republic of China
  • Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, 123 University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, Republic of China
autor
  • Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, 123 University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, Republic of China
  • Department of Multimedia Animation and Application, Nan Kai University of Technology, 568, Zhongzheng Rd., Caotun, Nantou, 542, Taiwan, Republic of China
Bibliografia
  • [1] 3GPP (2019). Study on NR Vehicle-to-Everything (V2X), 3GPP Specification 38.885.
  • [2] Abuelela, M. and Olariu, S. (2010). Taking VANET to the clouds, Proceedings of the International Conference on Advances in Mobile Computing and Multimedia, Paris, France, pp. 6–13.
  • [3] Asadi, B. and Vahidi, A. (2011). Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time, IEEE Transactions on Control Systems Technology 19(3): 707–714.
  • [4] Brännström, M., Sandblom, F. and Hammarstrand, L. (2013). A probabilistic framework for decision-making in collision avoidance systems, IEEE Transactions on Intelligent Transportation Systems 14(2): 637–648.
  • [5] Burke, M. and Williams, J. (2012). Cooperative ITS regulatory policy issues, Discussion paper, Australia National Transport Commission, pp. 1–77.
  • [6] Chang, B.-J., Tsai, Y.-L. and Liang, Y.-H. (2017). Platoon-based cooperative adaptive cruise control for achieving active safe driving through mobile vehicular cloud computing, Wireless Personal Communications 97(4): 5455–5481.
  • [7] Chen, S., Hu, J., Shi, Y. and Zhao, L. (2016). LTE-V: A TD-LTE-based v2x solution for future vehicular network, IEEE Internet of Things Journal 3(6): 997–1005.
  • [8] Desjardinsand, C. and Chaib-draa, B. (2011). Cooperative adaptive cruise control: A reinforcement learning approach, IEEE Transactions on Intelligent Transportation Systems 12(4): 1248–1260.
  • [9] Dinh, T.Q., Tang, J., La, Q.D. and Quek, T.Q.S. (2017). Offloading in mobile edge computing: Task allocation and computational frequency scaling, IEEE Transactions on Communications 65(8): 3571–3584.
  • [10] Falcone, P., Ali, M. and Sj¨oberg, J. (2011). Predictive threat assessment via reachability analysis and set invariance theory, IEEE Transactions on Intelligent Transportation Systems 12(4): 1352–1361.
  • [11] Geroliminis, N. and Skabardonis, A. (2011). Identification and analysis of queue spillovers in city street networks, IEEE Transactions on Intelligent Transportation Systems 12(3): 1107–1115.
  • [12] Gomes, A.S., Sousa, B., Palm, D.V., Fonseca, A., Zhao, Z., Monteiro, E., Braun, T., Simoes, P. and Cordeiro, L. (2017). Edge caching with mobility prediction in virtualized LTE mobile networks, Future Generation Computer Systems 70(1): 148–162.
  • [13] Helbing, D. (2001). Traffic and related self-driven many-particle systems, Reviews of Modern Physics 73(4): 1067–1141.
  • [14] Huang, C.-L., Fallah, Y., Sengupta, R. and Krishnan, H. (2010). Adaptive intervehicle communication control for cooperative safety systems, IEEE Network 24(1): 6–13.
  • [15] Hwang, R.-H., Chang, B.-J., Tsai, Y.-L. and Liang, Y.-H. (2017). Mobile edge computing-based vehicular cloud of cooperative adaptive driving for platooning autonomous self driving, Proceedings of IEEE SC2 2017, Kanazawa, Japan, pp. 33–39.
  • [16] IEEE (2005). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment: Medium access control (MAC) quality of service enhancements, Technical report, IEEE Std. 802.11e, IEEE, Piscataway, NJ.
  • [17] IEEE (2011). IEEE standard for information technology-telecommunication and information exchange between systems-local and metropolitan area networks-specific requirements, Technical report, IEEE Std. 802.11p, IEEE, Piscataway, NJ.
  • [18] IEEE (2013). IEEE trial-use standard for wireless access in vehicular environments (wave)—multi-channel operation, Technical report, IEEE Std. P1609.4, IEEE, Piscataway, NJ.
  • [19] ITS (2018). Intelligent transportation systems (ITS), US Department of Transportation, Washington, DC, http://www.its.dot.gov/.
  • [20] Jansson, J. and Gustafsson, F. (2008). A framework and automotive application of collision avoidance decision making, Automatica 44(9): 2347–2351.
  • [21] Kuhne, R. and Michalopoulos, P. (1997). Continuum flow models, in N.H. Gartner et al. (Eds.), Traffic Flow Theory: A State of the Art Report—Revised Monograph on Traffic Flow Theory, Oak Ridge National Laboratory, Oak Ridge, TN.
  • [22] Lorenz, E. (1963). Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20(2): 130–141.
  • [23] Maag, C., Mühlbacher, D., Mark, C. and Krüger, H.-P. (2012). Studying effects of advanced driver assistance systems (ADAS) on individual and group level using multi-driver simulation, IEEE Intelligent Transportation Systems Magazine 4(3): 45–54.
  • [24] MicroSim (2018). Microsimulation of road traffic flow, http: //www.traffic-simulation.de/.
  • [25] Milanés, V., Alonso, J., Bouraouiand, L. and Ploeg, J. (2011a). Cooperative maneuvering in close environments among cybercars and dual-mode cars, IEEE Transactions on Intelligent Transportation Systems 12(1): 15–24.
  • [26] Milanés, V., Godoy, J., Villagra, J. and Perez, J. (2011b). Automated on-ramp merging system for congested traffic situations, IEEE Transactions on Intelligent Transportation Systems 12(2): 500–508.
  • [27] Mitropoulos, G.K., Karanasiou, I.S., Hinsberger, A., Aguado-Agelet, F., Wieker, H., Hilt, H.-J., Mammarand, S. and Noecker, G. (2010). Wireless local danger warning: Cooperative foresighted driving using intervehicle communication, IEEE Transactions on Intelligent Transportation Systems 11(3): 539–553.
  • [28] MOTC (2018). Ministry of Transportation and Communications (MOTC), Taipei, http://www.iot.gov.tw/.
  • [29] Mousannif, H., Khalil, I. and Moatassime, H.A. (2011). Cooperation as a service in VANETs, Journal of Universal Computer Science 17(8): 1202–1208.
  • [30] Özturk, S. and Mišić, J. (2011). On non-saturation regime in IEEE 802.11p based VANET with mobile nodes, Proceedings of IEEE PIMRC, Toronto, Canada, pp. 740–744.
  • [31] Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R. and Cosenza, S. (2009). Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation, IEEE Communications Magazine 47(11): 84–95.
  • [32] Pauwelussen, J. and Feenstra, P.J. (2010). Driver behavior analysis during ACC activation and deactivation in a real traffic environment, IEEE Transactions on Intelligent Transportation Systems 11(2): 329–338.
  • [33] Satria, D., Park, D. and Jo, M. (2017). Recovery for overloaded mobile edge computing, Future Generation Computer Systems 70(1): 138–147.
  • [34] Schakel, W., Arem, B. and Netten, B. (2010). Effects of cooperative adaptive cruise control on traffic flow stability, Proceedings of IEEE Conference on Intelligent Transportation Systems, ITSC 2016, Rio de Janeiro, Brazil, pp. 759–764.
  • [35] Somda, F. and Cormerais, H. (2011). Auto-adaptive and string stable strategy for intelligent cruise control, IET Intelligent Transport Systems 5(3): 168–174.
  • [36] Stevenson, R. (2011). A drivers sixth sense, IEEE Spectrum 48(10): 50–55.
  • [37] Tacq, J. (2010). The normal distribution and its applications, in E. Baker et al. (Eds.), International Encyclopedia of Education, 3rd Edition, Elsevier Science, Amsterdam.
  • [38] Taleb, T., Benslimane, A. and Letaief, K. (2010). Toward an effective risk-conscious and collaborative vehicular collision avoidance system, IEEE Transactions on Vehicular Technology 59(3): 1474–1486.
  • [39] Thompson, W.J. (2001). Poisson distributions, Computing in Science and Engineering 3(3): 78–82.
  • [40] Treiber, M., Hennecke, A. and Helbing, D. (2000). Congested traffic states in empirical observations and microscopic simulations, Physical Review E62 10(1103): 1805–1824.
  • [41] Wilmink, I.R., Klunder, G.A. and Arem, B. (2007). Traffic flow effects of integrated full-range velocity assistance (IRSA), Proceedings of IEEE Intelligent Vehicles Symposium, IVS 2007, Istanbul, Turkey, pp. 1204–1210.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-383d0f4e-d98d-468b-9cb9-232a81546e35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.