Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized seed shells of Jatropha curcas (J. curcas L.). The structure of amorphous carbon consisting of polycyclic aromatic carbon sheets attached a high density of acidic SO3H groups (2.0 mmol · g−1) was identified with scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The performance of the solid acid catalyst was evaluated for biodiesel production in the esterification of oleic acid with methanol. 95.7% yield of biodiesel was obtained after 2 h reaction and the conversions with reused catalyst varied in the range of 95.7% to 95.1%, showing better activity and stability than commercial catalyst amberlyst-46. It was also observed that the prepared catalyst showed enhanced activity in the transesterification of triolein with methanol when compared with other solid acid catalysts. A synergistic effect results from the high density of SO3H groups and the good access of reactants to the acidic sites can be used to explain the excellent catalytic activity, as well as the strong affinity between the hydrophilic reactants and the neutral OH groups bonded to the polycyclic aromatic carbon rings.
Czasopismo
Rocznik
Tom
Strony
37--41
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Tianjin Modern Vocational Technology College, Department of Biochemical Engineering, Tianjin 300350, China
autor
- Tianjin Modern Vocational Technology College, Department of Biochemical Engineering, Tianjin 300350, China
autor
- Chendu Vocational College of Agricultural Science and Technology, Chendu 611000, China
Bibliografia
- 1. Karmakar, A., Karmakar, S. & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 101(19), 7201–7210. DOI: 10.1016/j.biortech.2010.04.079.
- 2. Chavez, E., Liu, D. & Zhao, X.B. (2010). Biofuels Production Development and Prospects in China. J. Biobased Mater. Bio. 4(3), 221–242. DOI: 10.1166/jbmb.2010.1088.
- 3. Ramadhas, A.S., Jayaraj, S. & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel 84(4), 335–340. DOI: 10.1016/j.fuel.2004.09.016.
- 4. Avhad, M. & Marchetti, J. (2015). A review on recent advancement in catalytic materials for biodiesel production. Renew. Sust. Energ. Rev. 50(1), 696–718. DOI: 10.1016/j.rser.2015.05.038.
- 5. Ding, J.C., He, B.Q. & Li, J.X. (2011). Cation Ion-Exchange Resin/Polyethersulfone Hybrid Catalytic Membrane for Biodiesel Production. J. Biobased Mater. Bio. 5(1), 85–91. DOI: 10.1166/jbmb.2011.1125.
- 6. Boz, N., Degirmenbasi, N. & Kalyon, D. (2015). Esterification and Transesterification of Waste Cooking Oil over Amberlyst 15 and Modified Amberlyst 15 Catalysts. Appl. Catal. B-Environ. 165(14), 723–730. DOI: 10.1016/j.apcatb.2014.10.079.
- 7. Kulkarni, M.G., Gopinath, R., Meher, L.C. & Dalai, A.K. (2006). Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem. 8(12), 1056–1062. DOI: 10.1039/B605713F.
- 8. Rao, K.N., Sridhar, A., Lee, A.F., Tavener, S.J., Young, N.A. & Wilson, K. (2006). Zirconium phosphate supported tungsten oxide solid acid catalysts for the esterification of palmitic acid. Green Chem. 8(9), 790–797. DOI: 10.1039/B606088A.
- 9. Yan, S., Maggio, C.D., Mohan, S., Kim, M., Salley, S.O. & Simon, Ng K.Y. (2010). Advancements in Heterogeneous Catalysis for Biodiesel Synthesis. Top Catal. 53(11–12), 721–736. DOI: 10.1007/s11244-010-9460-5.
- 10. Gupta, P. & Paul, S. (2014). Solid acids: Green alternatives for acid catalysis. Catal. Today. 116(2), 153–170. DOI: 10.1016/j.cattod.2014.04.010.
- 11. Mo, X.H., Lotero, E., Lu, C.Q., Liu, Y.L. & Goodwin, J.G. (2008). A Novel Sulfonated Carbon Composite Solid Acid Catalyst for Biodiesel Synthesis. Catal. Lett. 123(1–2), 1–6. DOI: 10.1007/s10562-008-9456-y.
- 12. Sania, Y., Dauda, W. & Aziza, A. (2014). Solid acids: Green alternatives for acid catalysis. Appl. Catal. A-Gen. 470(9), 140–161. DOI: 10.1016/j.apcata.2013.10.052.
- 13. Devi, B.L.A.P., Gangadhar, K.N., Prasad, P.S.S., Jagannadh, B. & Prasad, R.B.N. (2009). A Glycerol-based Carbon Catalyst for the Preparation of Biodiesel. Chem. Sus. Chem. 2(7), 617–620. DOI: 10.1002/cssc.200900097.
- 14. Shu, Q., Zhang, Q., Xu, G.H., Nawaz, Z., Wang, D.Z. & Wang, J.F. (2009). Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Process Technol. 90, 1002–1008. DOI: 10.1016/j.fuproc.2009.03.007.
- 15. Sricharoenchaikul, V., Pechyen, C. & Aton, D. (2008). Preparation and Characterization of Activated Carbon from the Pyrolysis of Physic Nut (Jatropha curcas L.) Waste. Energ. Fuel. 22(1), 31–37. DOI: 10.1021/ef700285u.
- 16. Suárez-García, F., Martínez-Alonso, A. & Tascón, J.M.D. (2001). Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp. Carbon. 39(7), 1111–1115. DOI: 10.1016/S0008-6223(01)00053-7.
- 17. Hara, M. (2010). Biodiesel Production by Amorphous Carbon Bearing SO3H, COOH and Phenolic OH Groups, a Solid Brønsted Acid Catalyst. Top Catal. 53(11–12), 805–810. DOI: 10.1007/s11244-010-9458-z.
- 18. Samart, C., Karnjanakom, S., Chaiya, C., Reubroycharoen, P., Sawangkeawd, R. & Charoenpaniche, M. (2015). Statistical optimization of biodiesel production from para rubber seed oil by SO3H-MCM-41 catalyst. Arab. J. Chem. In Press. DOI: 10.1016/j.arabjc.2014.12.034.
- 19. Li, X.T., Jiang, Y.J., Shuai, L., Wang, L.L., Meng, L.Q. & Mu, X.D. (2012). Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J. Mater. Chem. 22(1), 1283–1289. DOI: 10.1039/C1JM12954F.
- 20. Nakajima, K., Hara, M. & Hayashi, S. (2007). Environmentally Benign Production of Chemicals and Energy Using a Carbon-Based Strong Solid Acid. J. Am. Ceram Soc. 90(12), 3725–3734. DOI: 10.1111/j.1551-2916.2007.02082.x.
- 21. Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S. & Hara, M. (2010). Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci. 12(6), 1029–1034. DOI: 10.1016/j.solidstatesciences.2010.02.038.
- 22. Vitaliy, E., Alexander, N., Liudmyla, M., Andrii, V. & Vladyslav, V. (2012). Efficient carbon-based acid catalysts for the propan-2-ol dehydration. Catal. Commun. 27(5), 33–37. DOI: 10.1016/j.catcom.2012.06.018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3839deec-0b54-459a-9e78-f8e20fba6d05