PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality improvement of a safety valve with the use of numerical and experimental studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents results of numerical modelling, simulation and test bench experiments of a hydraulic direct-acting relief valve was used as a safety valve. The analyzed safety valve was placed in a system consisting of a fixed-speed pump, a control valve, a hydraulic cylinder as an actuator and a second pressure valve in the load line used as a payload generator for the cylinder. In the first step mathematical model of the system was formulated in the form of a system of ordinary differential equations. Next, simulation model was created in Matlab/Simulink. Simulations were carried out for different values of the actuator payload. The obtained results include time series of pressure, flow rate and displacement of the actuator piston. In order to confirm simulation results, a test bench was built and series of experiments were carried out. High compliance of simulation and laboratory results was obtained. It was confirmed that the proposed solution with the relief valve used as a safety valve fulfills its task of protecting the hydraulic system from excessive pressure increase.
Wydawca
Rocznik
Strony
378--385
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Faculty of Mechanical Engineering, Jana Pawla II 37, Cracow, Poland
  • Cracow University of Technology, Faculty of Mechanical Engineering, Jana Pawla II 37, Cracow, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Jana Pawla II 37, Cracow, Poland
  • Cracow University of Technology, Faculty of Mechanical Engineering, Jana Pawla II 37, Cracow, Poland
  • Cracow University of Technology, Faculty of Mechanical Engineering, Jana Pawla II 37, Cracow, Poland
  • Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway
Bibliografia
  • 1.Beune, A., Kuerten, J.G.M., van Heumen, M.P.C., 2012. CFD analysis with fluid– structure interaction of opening high-pressure safety valves, Computers & Fluids 64, 108-116, DOI:10.1016/j.compfluid.2012.05.010.
  • 2.Bjerre, M., Eriksen, J.G.I., Andreasen, A., Stegelmann, C., Mando, M., 2017. Analysis of Pressure Safety Valves for fire protection on offshore oil and gas installations, Process Safety and Env. Protection 105, 60-68, DOI: 10.1016/j.psep.2016.10.008.
  • 3.Dempster, W., Alshaikh, M., 2015. An Investigation of the Two Phase Flow and Force Characteristics of a Safety Valve, Procedia Engineering 130, 77-86, DOI: 10.1016/j.proeng.2015.12.177.
  • 4.Dossena, V., Franchina, N., Savini, M., Marinoni, F., Cecchi, F., Bassi, F., 2017. Reynolds number effects on the performance of safety valves operating with incompressible flows, Journal of Loss Prevention in the Process Industries 49, 525- 535, DOI: 10.1016/j.jlp.2017.05.020.
  • 5.Dossena, V., Marinoni, F., Bassi, F., Franchina, N., Savini, M., 2013. Numerical and experimental investigation on the performance of safety valves operating with different gases, International Journal of Pressure Vessels and Piping 104, 21-29, DOI: 10.1016/j.ijpvp.2013.01.002.
  • 6.Gadek-Moszczak, A., Radek, N., Wronski, S., Tarasiuk, J., 2014. Application the 3D image analysis techniques for assessment the quality of material surface layer before and after laser treatment. Adv. Mat. Res. Switz., 874, 133-138. DOI: 10.4028/www.scientific.net/AMR.874.133
  • 7.Galbally, D., Garcia, G., Hernando, J., de Dios Sanchez, J., 2015. Analysis of pressure oscillations and safety relief valve vibrations in the main steam system of a Boiling Water Reactor, Nuclear Engineering and Design 293, 258–271, DOI: 10.1016/j.nucengdes.2015.08.005.
  • 8.Karpisz, D., Kielbus, A., 2019. The Revitalization of Radar System as a Case of Functional and Information Security Problems. System Safety: Human - Technical Facility – Environment, 1, 692-699. DOI: 10.2478/czoto-2019-0088
  • 9.Kozien, E., 2017. Identification of stage phase growth in the checklist method using different statistical parameters. 20 th Int. Sci. Conf. Economic and Social Development, Prague, Varazdin, 538-545.
  • 10.Kozien, E., Kozien, A., 2017. Commercialization of scientific research results and transfer knowledge and technologies to economy as determinants of development of universities and enterprises in Poland - legal and economic perspective. 26th Int. Sci. Conf. Economic and Social Development, Zagreb, Varazdin, 326-335.
  • 11.Krawczyk, J., Sobczyk, A., Stryczek, J., Walczak, P., 2018. Tests of New Methods of Manufacturing Elements for Water Hydraulics. Materials Research Proceedings, 5, 200-205. DOI: 10.21741/9781945291814-35
  • 12.Lisowski E., Filo G., 2016. CFD analysis of the characteristics of a proportional flow control valve with an innovative opening shape, Energy Conversion and Management 123, 15-28, doi:10.1016/j.enconman.2016.06.025.
  • 13.Lisowski, E., Filo, G., 2017. Analysis of a proportional control valve flow coefficient with the usage of a CFD method, Flow Measurement and Instrumentation 53, 269–278, DOI: 10.1016/j.flowmeasinst.2016.12.009.
  • 14.Manimaran, A., Hiremath, S.S., Shekhar, P., 2016. Dynamic Simulation and Validation of a Vent and Safety Valve for Cryogenic Flight Tanks, Procedia Technology 25, 1320-1334, DOI:10.1016/j.protcy.2016.08.232.
  • 15.Miller, C., Bredemyer, L., 2007. Innovative safety valve selection techniques and data, Journal of Hazardous Materials 142, 685-688, doi: 10.1016/j.jhazmat.2006.06.072.
  • 16.Moncalvo, D., Friedel, L., 2010. A viscosity correction factor for shear-thinning liquid flows in safety valves, Journal of Loss Prevention in the Process Industries 23, 289- 293, DOI: 10.1016/j.jlp.2009.10.008.
  • 17.Osocha, P., 2018. Calculation of Residual Life for P91 Material Based on Creep Rate and Time to Rupture. Materials Research Proceedings, 5, 177-182. DOI: 10.21741/9781945291814-31
  • 18.Pietraszek, J., Kolomycki, M., Szczotok, A., Dwornicka, R., 2016. The fuzzy approach to assessment of ANOVA results. ICCCI 2016: Conf. Comp. Collective Intell. Springer, 260-268. DOI: 10.1007/978-3-319-45243-2_24
  • 19.Pliszka, I., Radek, N., Gadek-Moszczak, A., Fabian, P., Paraska, O., 2018. Surface Improvement by WC-Cu Electro-Spark Coatings with Laser Modification. Materials Research Proceedings, 5, 237-242. DOI: 10.21741/9781945291814-42
  • 20.Radek, N., Pasieczynski, L., Makrenek, M., Dudek, A., 2018. Mechanical Properties of Anti-Graffiti Coating Systems used in the Railway Industry. Materials Research Proceedings, 5, 243-247. DOI: 10.21741/9781945291814-43
  • 21.Scuro, N.L., Angelo, E., Angelo, G., Andrade, D.A., 2018. A CFD analysis of the flow dynamics of a directly-operated safety relief valve, Nuclear Engineering and Design 328, 321-332, DOI: 10.1016/j.nucengdes.2018.01.024.
  • 22.Skrzypczak-Pietraszek, E., Reiss, K., Zmudzki, P., Pietraszek, J., 2018. Enhanced accumulation of harpagide and 8-O-acetyl-harpagide in Melittis melissophyllum L. agitated shoot cultures analyzed by UPLC-MS/MS. PLoS ONE 2018, 13, art. e0202556. DOI: 10.1371/journal.pone.020255610.1371/journal.pone.0202556
  • 23.Song, X.G., Wang, L.T., Park, Y.C., Sun, W., 2015. A Fluid-Structure Interaction Analysis of the Spring-Loaded Pressure Safety Valve during Popping Off, Procedia Engineering 130, 87-94, DOI: 10.1016/j.proeng.2015.12.178.
  • 24.Szczotok, A., Radek, N., Dwornicka, R., 2018. Effect of the induction hardening on microstructures of the selected steels. METAL 2018: 27th Int. Conf. Metallurgy and Materials. Ostrava, Tanger, 1264-1269.
  • 25.Ulewicz, R., Selejdak, R., 2018. Impact of Laser Machining on the Structure and Properties of Tool Steels. Materials Research Proceeding, 5, 37-40. DOI: DOI: 10.21741/9781945291814-7
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3834bcb4-da92-4896-aa90-13922a7c5f2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.