PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Environmental Stressors on Respiration Activity of Afforested Mine Soils

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ stresogennych czynników środowiskowych na tempo respiracji zalesionych gruntów kopalnianych
Języki publikacji
EN
Abstrakty
EN
The functioning of soils strongly depends on the activity of the soil microbial communities and their ability to withstand different environmental stresses. The aim of this work is to compare the effect of two frequently occurring stressors (drought-rewet and freeze-thaw cycles) on the basal respiration rate of mine and natural soils. Soil samples (n = 18) were delivered from the Szczakowa open-cast sand quarry in Poland. The samples were measured for organic matter (OM) content, basal respiration, pH levels, and electric conductivity. The studied mine and natural soils had a similar texture and were classified as loamy sands. The natural soils contained significantly more OM than the mine soils but did not differ in terms of pH. There were no significant differences in the OM content, pH, and texture of the soils under the studied tree species (Pine, Birch, Larch). Mine soils exhibited significantly lower initial respiration rate (RESP value) than the natural soils (1.34 μg C-CO2 g−1 24 h−1 vs. 3.13 μg C-CO2 g−1 24 h−1 ). Five freeze-thaw cycles reduced cumulative CO2 evolution both in both the mine and the natural soils by 17.8% and 6.7%, respectively. Moreover, the reaction of the respiration rate to dry-rewet cycles differed distinctly between the mine and natural soils. In the natural soils, all dry-rewet cycles increased the respiration rate, wherein the increase was much more pronounced in the last two cycles. We conclude that periods of drought in the summer and freeze-thaw events in the autumn and spring may have a stronger negative effect on the functioning of forest ecosystems in the reclaimed lands than in natural stands.
PL
Funkcje gleb silnie zależą od aktywności mikroorganizmów i ich zdolności do przeciwstawiania się różnym stresom środowiskowym. Celem pracy było porównanie wpływu dwóch często występujących czynników stresowych – cykli susza-wilgoć i mrożenie-rozmrażanie – na respirację gleb industrioziemnych i gleb naturalnych. Próbki gleby (n = 18) zostały pobrane na zrekultywowanych terenach kopalni piasku w Szczakowej oraz w lasach naturalnych w jej sąsiedztwie. W próbkach oznaczono zawartość materii organicznej, tempo respiracji, pH i przewodność elektrolityczną. Badane próbki z gleb industroziemnych i naturalnych miały podobne uziarnienie i zostały sklasyfikowane jako piaski gliniaste. Gleby naturalne zawierały znacznie więcej OM [%] niż gleby industrioziemne, natomiast obie rozpatrywane kategorie gleb nie róż- niły się znacząco pod względem pH. Ponadto nie zaobserwowano istotnych różnic w zawartości materii organicznej, pH i uziarnienia gleb w próbkach pobranych pod różnymi drzewostanami (sosna, brzoza, modrzew). Gleby industroziemne wykazywały znacznie niższe początkowe wartości respiracji (1,34 μg C-CO2 g−1 24 h−1 ) niż gleby naturalne (3,13 μg C-CO2 g−1 24 h−1 ). Pięciocyklowy proces mrożenia-rozmrażania zredukował skumulowane wartości wydzielania CO2 zarówno w industrozimenych, jak i naturalnych glebach o odpowiednio 17,8% i 6,7%. Ponadto reakcja na wskaźnik respiracji w cyklu susza-wilgoć różniła się znacząco w przypadku gleb industroziemnych i naturalnych: w glebach naturalnych wszystkie cykle suszenia-nawadniania zwiększały wartość respiracji, przy czym wzrost ten był bardziej widoczny w ostatnich dwóch cyklach. Podsumowując, można stwierdzić, że okresy suszy w lecie i mrożenia-rozmrażania jesienią oraz wiosną mogą wywierać bardziej negatywny wpływ na leśne ekosystemy na ternach zrekultywowanych niż na obszarach występowania naturalnych drzewostanów.
Rocznik
Strony
97--110
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Krakow, Poland
Bibliografia
  • [1] Adu J., Oades J.: Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biology and Biochemistry, vol. 10, 1978, pp. 109–115.
  • [2] Azarbad H., van Straalen N.M., Laskowski R., Nikiel K., Röling W.F.M., Niklińska M.: Susceptibility to additional stressors in metal-tolerant soil microbial communities from two pollution gradients. Applied Soil Ecology, vol. 98, 2016, pp. 233–242.
  • [3] Baldrian P., Trögl J., Frouz J., Šnajdr J., Valášková V., Merahutová V., Cajthaml T., Herinková J.: Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biology and Biochemistry, vol. 40, 2012, pp. 2107–2115.
  • [4] Bauhus J., Khanna P.K.: The significance of microbial biomass in forest soils. [in:] Rastin N., Bauhus J. (Eds.), Going Underground – Ecological Studies in Forest Soils, Research Signpost, Trivandrum, India 1999, pp. 77–110.
  • [5] Bolter M., Soethe N., Horn R., Uhlig C.: Seasonal development of microbial activity in soils of northern Norway. Pedosphere, vol. 15, 2005, pp. 716–727.
  • [6] Cardoso E.J.B.N., Vasconcellos R.L.F., Bini D., Miyauchi M.Y.H., Santos C.A., Alves P.R.L., Paula A.M., Nakatani A.S., Pereira J., Nogueira M.A.: Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientica Agricola, vol. 70, no. 4, 2013, pp. 274–289.
  • [7] Chodak M.: Relationships Between Microbial and Chemical Properties in Mine Soils Reclaimed for Forestry. Geomatics and Environmental Engineering, vol. 4, no. 4, 2010, pp. 27–35.
  • [8] Chodak M., Klimek B., Azarbad H., Jaźwa M.: Functional diversity of soil microbial communities under Scots pine, Norway spruce, silver birch and mixed boreal forests. Pedobiologia, vol. 58, 2015, pp. 81-88.
  • [9] Chodak M., Pietrzykowski M., Niklińska M.: Development of microbial properties in a chronosequence of sandy mine soils. Applied Soil Ecology, vol. 41, 2009, pp. 259–268.
  • [10] Chodak M., Pietrzykowski M., Sroka K.: Physiological profiles of microbial communities in mine soils afforested with different tree species Ecological Engineering, vol. 81, 2015, pp. 462–470.
  • [11] Fierer N., Schimel J.P.: Effect of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, vol. 34, 2002, pp. 777–787.
  • [12] Fierer N., Schimel J.P., Holden P.A.: Influence of Drying-Rewetting Frequency on Soil Bacterial Community Structure. Microbial Ecology, vol. 45, 2003, pp. 63–71.
  • [13] Frouz J., Novakova A.: Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development. Geoderma, vol. 129, 2005, pp. 54–64.
  • [14] Göranson H., Godbold D.L., Jones D.L., Rousk J.: Bacterial growth and respiration responses upon rewetting dry forest soils: Impact of drought legacy. Soil Biology and Biochemistry, vol. 57, 2013, pp. 477–486.
  • [15] Graham M.H., Haynes R.J.: Organic matter status and the size, activity and metabolic diversity of the soil microflora as indicators of the success of rehabilitation of sand dunes. Biology and Fertility of Soils, vol. 39, 2004, pp. 429–437.
  • [16] Griffiths B.S., Bonkowski M., Royc J., Ritz K.: Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Applied Soil Ecology, vol. 16, 2001, pp. 49–61.
  • [17] Hansson K., Olsson B.A., Olsson M., Johansson U., Kleja D.B.: Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. Forest Ecology and Management, vol. 262, 2011, pp. 522–530.
  • [18] Henry H.A.L.: Soil freeze–thaw cycle experiments: Trends, methodological weaknesses and suggested improvements. Soil Biology and Biochemistry, no. 39, 2007, pp. 977–986.
  • [19] Hueso S., García C., Hernández T.: Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biology and Biochemistry, vol. 50, 2012, pp. 167–173.
  • [20] Kaiser E.A., Mueller T., Joergensen R.G., Insam H., Heinemeyer O.: Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biology and Biochemistry, vol. 24, 1992, pp. 675–683.
  • [21] Kemmitt S.J., Lanyon C.V., Waite I.S, Wen Q., Addiscott T.M., Bird N.R.A., O’Donnell A.G., Brookes P.C.: Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass – a new perspective. Soil Biology and Biochemistry, vol. 40, 2008, pp. 61–73.
  • [22] Kieft T., Soroker E., Firestone M.: Microbial biomass response to a rapid increase of water potential when dry soil is wetted. Soil Biology and Biochemistry, vol. 19, 1987, pp. 119–126.
  • [23] Mummey D.L., Stahl P.D., Buyer J.S.: Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Applied Soil Ecology, vol. 21, 2002, pp. 251–259.
  • [24] Myślińska E.: Laboratoryjne badania gruntów i gleb. Wyd. 2 zm. Wyd. Uniwersytetu Warszawskiego, Warszawa 2010.
  • [25] Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G.: Microbial diversity and soil functions. European Journal of Soil Science, vol. 54, 2003, pp. 655–670.
  • [26] Pietrzykowski M., Krzaklewski W.: Soil organic matter C and N accumulation during natural succession and reclamation of an opencast sand quarry. Archives of Agronomy and Soil Science, vol. 53, 2007, pp. 473–483.
  • [27] Placella S.A., Brodie E.L., Firestone M.K.: Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proceedings of the National Academy of Sciences, vol. 109, no. 27, 2012, pp. 10931–10936.
  • [28] Sanaullah M., Blagodatskaya E., Chabbi A., Rumpel C., Kuzyakov Y.: Droughteff ects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Applied Soil Ecology, vol. 48, 2011, pp. 38–44.
  • [29] Schimel J., Balser T.C., Wallenstein M.: Microbial stress-response physiology and its implications for ecosystem function. Ecology, vol. 88, 2007, pp. 1386–1394.
  • [30] Schimel J.S., Bilbrough C.B., Welker J.M.: The effect of changing snow cover on year-round soil nitrogen dynamics in arctic tundra ecosystems. Soil Biology and Biochemistry, vol. 36, 2004, pp. 217–227.
  • [31] Schimel J.P., Clein J.S.: Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biology and Biochemistry, vol. 28, 1996, pp. 1061–1066.
  • [32] Sheoran V., Sheoran A.S., Poonia P.: Soil Reclamation of Abandoned Mine Land by Revegetation: A Review. International Journal of Soil, Sediment and Water, vol. 3, no. 2, art. 13, 2010.
  • [33] Smolander A., Kitunen V.: Comparison of tree species effects on microbial C and N transformations and dissolved organic matter properties in the organic layer of boreal forests. Applied Soil Ecology, vol. 49, 2011, pp. 224–233.
  • [34] Uhlirova E., Elhottova D., Třiska J., Šantrůčková H.: Physiology and microbial community structure in soil at extreme water content. Folia Microbiologica, vol. 50, 2005, pp. 161–166.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-383409da-a090-479d-ab3e-20787f99df5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.