PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics of sulphuric acid leaching of titanium from refractory anatase under atmospheric pressure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anatase, as an important titanium resource, is attracting more and more attention in research and application. In this study, an efficient process of comprehensively extracting the titanium and other valuable elements from the anatase mineral was proposed. The effect of particle size, stirring speed, initial sulphuric acid concentration, solid-to-liquid ratio, and reaction temperature on the leaching rate of titanium from anatase was investigated. Under appropriate two-stage countercurrent leaching conditions, with the first stage of the liquid-to-solid ratio of 1/3 g/cm3, reaction temperature of 120 °C, initial acid concentration of 11 mol/dm3, residence time of 30 min, stirring speed of 200 rpm, and the second stage of the liquid-to-solid ratio of 1/3 g/cm3, reaction temperature of 200 °C, initial acid concentration of 13 mol/dm3, residence time of 30 min, and stirring speed of 200 rpm, over 99% TiO2, 99% Al2O3, and 97% Sc2O3 were extracted respectively with quartz still remained in the residue. X-ray diffraction, X-ray fluorescence spectrometer, and scanning electron microscopy/energy-dispersive spectroscopy were used to characterize the anatase samples before and after the leaching. Additionally, the leaching kinetics analysis indicated that both acid concentration and temperature were the most significant parameters for the leaching process. And, the titanium leaching reaction rate was controlled by the diffusion of reactants through the residual layer.
Słowa kluczowe
Rocznik
Strony
467--478
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
Bibliografia
  • AGATZINI-LEONARDOU, S., OUSTADAKIS, P., TSAKIRIDIS, P E., MARKOPOULOS, C., 2008. Titanium leaching from red mud by diluted sulphuric acid at atmospheric pressure. Journal of Hazardous Materials. 157, 579-586.
  • AKHGAR, B N., PAZOUKI, M., RANJBAR, M., HOSSEINNIA, A., Keyanpour-Rad, M., 2010. Preparation of nanosized synthetic rutile from ilmenite concentrate. Minerals Engineering. 223, 587-589.
  • ALKAN, G., YAGMURLU, B., CAKMAKOGLU, S., CAKMAKOGLU1, S., HERTEL, T., KAYA, Ş., GRONEN, L., STOPIC, S., FRIEDRICH, B., 2018. Novel Approach for Enhanced Scandium and Titanium Leaching Efficiency from Bauxite Residue with Suppressed Silica Gel Formation. Scientific Reports. 8, 5676.
  • BARKSDALE, J., 1950. Book Reviews: Titanium: Its Occurrence, Chemistry, and Technology. Science. 111.
  • DAS, G K., PRANOLO, Y., ZHU, Z., CHENG, C Y., 2013. Leaching of ilmenite ores by acidic chloride solutions. Hydrometallurgy. 133, 94-99.
  • GAMBOGI, JOSEPH., 2009. Titanium, 2007 minerals yearbook. US Geological Surv. 176-178.
  • HAN, Y F., SUN, T C., LI, J., QI, T., WANG, L N., 2012. Preparation of titanium dioxide from titania-rich slag by molten NaOH method. Metallurgy and Materials. 19, 205-211.
  • KALINKIN, A M., KALINKINA, E V., 2011. Modelling of the sulphuric acid leaching of mechanically activated titanite. Hydrometallurgy. 108, 189-194.
  • KOLEN'KO, Y V., BURUKHIN, A A., CHURAGULOV,l B R., OLEYNIKOV, N N., 2003. Synthesis of nanocrystalline TiO2, powders from aqueous TiOSO4, solutions under hydrothermal conditions. Materials Letters. 57, 1124-1129.
  • LEVENSPIEL, O., 1972. Chemical Reaction Engineering. 2nd ed, 253-308.
  • LI, C., LIANG, B., GUO, L H., 2007. Dissolution of mechanically activated Panzhihua ilmenites in dilute solutions of sulphuric acid. Hydrometallurgy. 89, 1-10.
  • LIM, K H., SHON, B H., 2008. Metal Components (Fe, Al, and Ti) Recovery from Red Mud by Sulphuric Acid Leaching Assisted with Ultrasonic Waves. International Journal of Emerging Technology and Advanced Engineering. 5, 2250-2459.
  • LIU, S S., GUO, Y F., QIU, G Z., JIANG, T., CHEN, F., 2014. Solid-state reduction kinetics and mechanism of pre-oxidized vanadium–titanium magnetite concentrate. Transactions of Nonferrous Metals Society of China. 24, 3372-3377.
  • LIU, S S., GUO, Y F., QIU, G Z., JIANG, T., CHEN, F., 2013. Preparation of Ti-rich material from titanium slag by activation roasting followed by acid leaching. Transactions of Nonferrous Metals Society of China. 23, 1174-1178.
  • NAYL, A A., AWWAD, N S., ALY, H F., 2009. Kinetics of acid leaching of ilmenite decomposed by KOH Part 2. Leaching by H2SO4 and C2H2O4. Journal of Hazardous Materials. 168, 793-799.
  • RHEE, K I., SOHN, H Y., 1990. The selective chlorination of iron from llmenite ore by CO-Cl2, mixtures: Part I. intrinsic kinetics. Metallurgical Transactions B. 21, 321-330.
  • SAMAL, S., RAO, K K., MUKHERJEE, P S., 2008. Statistical modelling studies on leachability of titania-rich slag obtained from plasma melt separation of metallized ilmenite. Chemical Engineering Research & Design. 86, 187-191.
  • SARKER, M K., RASHID, A K M B., KURNY, A S W., 2006. Kinetics of leaching of oxidized and reduced ilmenite in dilute hydrochloric acid solutions. International Journal of Mineral Processing. 79, 223-228.
  • SASIKUMAR, C., RAO, D S., SRIKANTH, S., MUKHOPADHYAY, N K., MEHROTRA, S P., 2007. Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4. Hydrometallurgy. 88, 154-169.
  • SUI, L L., ZHAI, Y C., 2014. Reaction kinetics of roasting high-titanium slag with concentrated sulphuric acid. Transactions of Nonferrous Metals Society of China. 24, 848-853.
  • TEMPLE, A K., 1966. Alteration of ilmenite. Economic Geology. 61, 695-714.
  • U.S. GeologicalSurvey., 2013. Mineral Commodity Summaries. U.S.GeologicalSurvey, (Reston, Virginia).
  • VELARDO, A., GIONA, M., ADROVER, A., PAGNANELLI, F., TORO, L., 2002. Two-layer shrinking-core model: parameter estimation for the reaction order in leaching processes. Chemical Engineering Journal. 90, 231-240.
  • WELHAM, N J., LLEWELLYN, D J., 1998. Mechanical enhancement of the dissolution of ilmenite. Minerals Engineering. 11, 827-841.
  • WHITEHEAD, J., 1983. Titanium Compounds (inorganic). In: Grayson, M., Ed., Encyclopaedia of Chemical Technology, 3rd Edition. John Wiley and Sons, Hoboken. 131-176.
  • XIONG, X H., WANG, Z X., WU, F X., LI, X H., GUO, H J., 2013. Preparation of TiO2 from ilmenite using sulfuric acid decomposition of the titania residue combined with separation of Fe3+ with EDTA during hydrolysis. Advanced Powder Technology. 24, 60-67.
  • ZHANG, M, NIE, A, XIE, F, ZHU, M, ZHANG, Z., 2014 a. Study on the element geochemical charactersitics of the Shazi large-sized anatase ore deposit in Qinglong, Guizhou Province. Chinese Journal of Geochemistry. 33, 316-323.
  • ZHANG, M., NIE, A., XIE, F., ZHANG, Z., 2014 b. Study on the geological conditions of metallogenesis of the Shazi large-scale anatase deposit in Qinglong County, Guizhou Province. Chinese Journal of Geochemistry. 33, 450-458.
  • ZHANG, W., ZHU, Z., CHENG, C Y., 2011. A literature review of titanium metallurgical processes. Hydrometallurgy. 108, 177-188.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-383407fa-7159-46cb-918d-ca907bb9e8d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.