Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present work, almond peels (AP), an inexpensive and widely available cellulosic material in Algeria, have been utilized as an effective natural adsorbent to eliminate methylene blue from water-based solutions. SEM and FTIR analysis were employed to qualify the adsorbent. The effect of particle size, pH of solution, agitating rate and adsorbent dose were optimized to measure the almond peels capacity of adsorption. The pseudo-first and secondorders, Elovich, and intra-particle diffusion models were employed for analyzing adsorption kinetics. Equilibrium adsorption was examined through Langmuir, Freundlich, and Temkin isotherms. The sorption mechanism was most clearly outlined by the pseudo-second-order kinetic and Freundlich isotherm equations. Our experimental findings indicate that the efficacy of employing these porous adsorbents stems not only from their effective performance attributed to their compositional and structural properties but also from their easy separation from solutions owing to their macroscopic dimensions.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
351--365
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Institute of Technology, University of Bouira, 10 000 Bouira, Algeria
- Laboratory of Materials and Sustainable Development, Faculty of Science and Applied Sciences, University of Bouira, 10 000 Bouira, Algeria
autor
- Institute of Technology, University of Bouira, 10 000 Bouira, Algeria
- Laboratory of Materials and Sustainable Development, Faculty of Science and Applied Sciences, University of Bouira, 10 000 Bouira, Algeria
autor
- Laboratory of Materials and Sustainable Development, Faculty of Science and Applied Sciences, University of Bouira, 10 000 Bouira, Algeria
- CRAPC, Research Center in Physico-Chemical Analysis, BP 384 Z.I. Bou-Ismail CP, 42004 Tipaza, Algeria
Bibliografia
- 1. Ali L. I., El-Molla S. A., Ibrahim M. M., Mahmoud H. R., Naghmash M. A. 2016. Effect of preparation methods and optical band gap of ZnO nanomaterials on photodegradation studies Optical Materials (58) 484-490
- 2. Alver E., Metin A.Ü., Brouers F. 2020. Methylene blue adsorption on magnetic alginate/rice husk bio-composite, International Journal of Biological Macromolecules, https://doi.org/10.1016/j.ijbiomac.2020.02.330
- 3. Bagheri A.R., Ghaedi M., Asfaram A., Jannesar R., Goudarzi A., 2017. Design and construction of nanoscale material for ultrasonic assisted adsorption of dyes: application of derivative spectrophotometry and experimental design methodology, Ultrasonics sonochemistry (35) 112-123.
- 4. Bayat M., Javanbakht V., Esmaili J. 2017. Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Biomac, doi:10.1016/j.ijbiomac.2018.05.012
- 5. Ben Ali S., Jaouali I., Souissi-Najar S., Ouederni A. 2016. Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal, Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2016.10.081.
- 6. Bouaziz F., Koubaa M., Kallel F., Chaari F., Driss D., Ellouz Ghorbel R., Ellouz Chaabouni S. 2015. Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions. Industrial Crops and Products (74) 903–911
- 7. Choudhary B.C., Paul D., Borse A.U., Garole D.J. 2017. Surface functionalized biomass for adsorption and recovery of gold from electronic scrap and refinery wastewater, Separation and Purification Technology, https://doi.org/10.1016/j.seppur.2017.12.024
- 8. Dardouri S., Sghaier J. 2017. A comparative study of adsorption and regeneration with different agricultural wastes as adsorbents for the removal of methylene blue from aqueous solution, doi:10.1016/j.cjche.2017.01.012
- 9. Dawood S., Kanti T., Phan S.C. 2017. Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.07.019
- 10. De Carvalho H. P., Huang J., Zhao M., Liu G., Dong L., Liu X. 2015. Improvement of Methylene Blue removal by electrocoagulation/ banana peel adsorption coupling in a batch system, Alexandria Eng. J. http://dx.doi.org/10.1016/j.aej.2015.04.003
- 11. Debnath S., Ballav N, Maity A., Pillay K. 2016. Competitive adsorption of ternary dye mixture using pine cone powder modified with β-cyclodextrin, Journal of Molecular Liquids, doi: 10.1016/j.molliq.2016.10.109
- 12. El-Moselhy M. M., M. Kamal S. 2017. Selective Removal and preconcentration of methylene blue from polluted water using cation exchange polymeric material, Groundwater for Sustainable Development, https://doi.org/10.1016/j.gsd.2017.10 .001
- 13. El-Zawahry M.M., Abdelghaffar F., Abdelghaffar R.A., Hassabo A.G. 2016. Equilibrium and kinetic models on the adsorption of Reactive Black 5 from aqueous solution using Eichhornia crassipes/chitosan composite, Carbohydr. Polym. (136) 507–515.
- 14. Hao. H, Wang. Y, Shi. B, Han. K, Zhuang. Y, Kong. Y, Huang. X 2018. Strong enhancement of methylene blue removal from binary wastewater by in-situ ferrite process. Journal of environmental science, https://doi.org/10.1016/j.jes.2018.01.019
- 15.Jabli M., Gamha E., Sebeia N., Hamdaoui M. 2017. Almond shell waste (Prunus dulcis): Functionalization with [dimethy-diallylammonium-chloride-diallylamin-co polymer] and chitosan polymer and its investigation in dye adsorption, Journal of Molecular Liquids. doi:10.1016/j.molliq.2017.05.041
- 16. Jain S. N., Gogate P. R. 2018. Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies Journal of Environmental Management (210) 226-238
- 17. Kanakarajua D., Rusydah N., Shahdada M., Limb Y., Pace A. 2018. Magnetic hybrid TiO2/Alg/FeNPs triads for the efficient removal of methylene blue from water Sustainable Chemistry and Pharmacy (8) 50–62
- 18. Kupeta A.J.K., Naidoo EB., Ofomaja AE. 2018. kinetics and equilibrium study of 2-nitrophénol adsorption onto polyurethane cross-linked pine cone biomass, Journal of cleaner product doi:10.1016/j.jclepro.2018.01.034
- 19. Li Q., Li Y., Ma X., Du Q., Sui K., Wang D., Wang C., Li H., Xia Y. 2017. Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water Chemical Engineering Journal (316) 623–630
- 20. Li Y., Sun J., Du Q., Zhang L., Yang X., Wu S., Xia Y., Wang Z., Xia L., Cao A. 2014. Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning, Carbohydr. Polym. (102) 755–761
- 21. Li Y., Zhang Y., Zhang Y., Wang G., Li S., Han R, Wei W. 2018. Reed biochar supported hydroxyapatite nanocomposite: Characterization and reactivity for methylene blue removal from aqueous media. Journal of Molecular Liquids, (263) 53-63
- 22. Liang C. Z., Sun S.P., Li F. Y., Ong Y.K., Chung T.S. 2014. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration, J. Membr. Sci. (469) 306–315.
- 23. M Erfani, V Javanbakht. 2017. Methylene Blue removal from aqueous solution by a biocomposite synthesized from sodium alginate and wastes of oil extraction from almond peanut. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Biomac, doi:10.1016/j.ijbiomac.2018.03.003
- 24. Maaloul N., Oulego P., Rendueles M., Ghorbal A., Diaz M. 2017. Novel biosorbents from almond shells: Characterization and adsorption properties modeling for Cu(II) ions from aqueous solutions, Journal of Environmental Chemical Engineering http://dx.doi.org/10.1016/j.jece. 2017.05. 037
- 25. Manenti D.R., Modenes A.N., Soares P.A., Espinoza- Quinones F.R., Boaventura R.A.R., Bergamasco R., Vilar V.J.P. 2014. Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment, Chem. Eng. J. (252) 120–130.
- 26. Mishra A, Ojha H., Pandey J., Tiwari A. K., Pathak M. 2023. Adsorption characteristics of magnetized biochar derived from Citrus limetta peels. Heliyon 9 e20665
- 27. Natarajan. S, Bajaj. H.C., Tayade, R.J., 2017. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci. https://doi.org/10.1016/j.jes.2017.03.011
- 28. Obakeng B., Saheed N., Sanni O., Viljoen E. L., Pholosi A., Pakade V. E. 2023. Surfactant-modified Macadamia nutshell for enhancement of methylene blue dye adsorption from aqueous media, Case Studies in Chemical and Environmental Engineering 8 100357
- 29. Pandiarajan A., Kamaraj R., Vasudevan S., Vasudevan S. OPAC. 2018. (Orange Peel Activated Carbon) derived from waste orange peel for the adsorption of Chlorophenoxyacetic Acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies, Bioresource Technology. doi: https://doi.org/10.1016/j.biortech.2018.04.005
- 30. Ribeiro. J.P, Cruz. N. C, Neves M. C, Rodrigues. S. M, L. A.C. Tarelho L. A.C, Nunes. M. I 2023. Granulated biomass fly ash coupled with fenton process for pulp and paper wastewater treatment Environmental Pollution 317 120777
- 31. S Markovic, A Stankovic, Z Lopici, S Lazarevic, M Stojanovic, D Uskokovic. Application of raw peach shell particles for removal of methylene blue. J. Environ. Chem. Eng. (2015), http://dx.doi.org/10.1016/j.jece.2015.04.002
- 32. Sadeek S. A., Negm N. A., Hefni H.H.H., Abdel Wahab M. M. 2015. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures. International Journal of Biological Macromolecules (81) 400–409
- 33. Shakoor S., Nasar A. 2016. Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low-cost adsorbent Journal of the Taiwan Institute of Chemical Engineers (000) 1–10
- 34. Subramaniam R., Ponnusamy S. K. 2015. Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: Optimization by response surface methodology Water Resources and Industry (11) 64–70
- 35. Tariqul Islam M., Saenz-Arana R., Hernandez C., Guinto T., Ariful Ahsan M., Bragg D. T., Wang H., Alvarado-Tenorio B., Noveron J. C. 2018. Conversion of waste tire rubber into a high-capacity adsorbent for the removal of methylene blue, methyl orange, and tetracycline from water, Journal of Environmental Chemical Engineering https://doi.org/10.1016/j.jece.2018.04. 058
- 36. Tural B., Ertas E., Enez B., Aguloglu Fincan S., Tural S. 2017. Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus Subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue, Journal of Environmental Chemical Engineering http://dx.doi.org/10.1016/j.jece.2017.09 .019
- 37. Yang P., Lu Y., Zhang H., Li R., Hu X., Shahab A., Elnaggar A. Y., Alrefaei A. F., Almutairi M. H., Ali E. 2023. Effective removal of methylene blue and crystal violet by low-cost biomass derived from eucalyptus: Characterization, experiments, and mechanism investigation, Environmental Technology & Innovation, doi:https://doi.org/10.1016/j.eti.2023.103459
- 38. Zarghami, Z., Akbari, A., Latifi, A.M., Amani, M.A. 2016. Design of a new integrated Chitosan PAMAM Dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics, Bioresource Technology, doi:http://dx.doi.org/10.1016/j.biortech. 2016.01.052
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38313790-b3ed-4f64-9a33-a1ac51d6621c