PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Goos–Hänchen shift via refractive index control of four-level quantum dot nanostructure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we will discuss the Goos–Hänchen shifts properties of reflected and transmitted light beams from the cavity with four-level InGaN/GaN quantum dots nanostructure. We find that the Goos–Hänchen shifts properties of reflected and transmitted light beams can be controlled via adjusting the refractive index of four-level quantum dot nanostructure. Here, we show that by tunable infrared laser field the negative refraction index can be possible at certain values of probe frequency. Therefore, the large Goos–Hänchen shifts for reflected and transmitted light beams are possible for negative refractive index condition.
Czasopismo
Rocznik
Strony
499--513
Opis fizyczny
Bibliogr. 71 poz., rys.
Twórcy
  • Sama Technical and Vocational Training College, Islamic Azad University, Tabriz Branch, Tabriz, Iran
Bibliografia
  • [1] YING WU, Two-color ultraslow optical solitons via four-wave mixing in cold-atom media, Physical Review A 71(5), 2005, article ID 053820.
  • [2] YING WU, DENG L., Ultraslow optical solitons in a cold four-state medium, Physical Review Letters 93(14), 2004, article ID 143904.
  • [3] YING WU, SALDANA J., YIFU ZHU, Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency, Physical Review A 67(1), 2003, article ID 013811.
  • [4] YING WU, XIAOXUE YANG, Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime, Physical Review A 70(5), 2004, article ID 053818.
  • [5] YING WU, XIAOXUE YANG, Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis, Physical Review A 71(5), 2005, article ID 053806.
  • [6] YING WU, XIAOXUE YANG, Four-wave mixing in molecular magnets via electromagnetically induced transparency, Physical Review B 76(5), 2007, article ID 054425.
  • [7] YING WU, XIAOXUE YANG, Giant Kerr nonlinearities and solitons in a crystal of molecular magnets, Applied Physics Letters 91(9), 2007, article ID 094104.
  • [8] ZHENGYANG BAI, CHAO HANG, GUOXIANG HUANG, Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency, Optics Express 21(15), 2013, pp. 17736–17744.
  • [9] XUEMEI CHENG, YIGANG DU, YANPENG ZHANG, ZHIGUO WANG, YIZHU MIAO, ZHAOYU REN, JINTAO BAI, Polarization of four-wave mixing with electromagnetically induced transparency, Optics Communications 285(21–22), 2012, pp. 4507–4514.
  • [10] HATEF A., SADEGHI S.M., SINGH M.R., Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems, Nanotechnology 23(6), 2012, article ID 065701.
  • [11] TIAN LI, MEI-JU LU, WEINSTEIN J.D., Electromagnetically induced transparency in an open multilevel system, Physical Review A 84(2), 2011, article ID 023801.
  • [12] LIU J.-B., LIU N., SHAN C.-J., HUANG Y.-X., LIU T.-K., Ultra-slow soliton pairs in four-level inverted Y-system via electromagnetically induced transparency, Journal of Modern Optics 56(16), 2009, pp. 1774–1779.
  • [13] PHILLIPS M.C., HAILIN WANG, Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells, Physical Review B 69(11), 2004, article ID 115337.
  • [14] SCHMIDT H., RAM R.J., All-optical wavelength converter and switch based on electromagnetically induced transparency, Applied Physics Letters 76(22), 2000, p. 3173.
  • [15] HAIBIN WU, MIN XIAO, GEA-BANACLOCHE J., Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions, Physical Review A 78(4), 2008, article ID 041802(R).
  • [16] ZHIPING WANG, BENLI YU, SHENGLAI ZHEN, XUQIANG WU, Large refractive index without absorption via quantum interference in a semiconductor quantum well, Journal of Luminescence 134, 2013, pp. 272–276.
  • [17] ZHI-HONG XIAO, KISIK KIM, Obtaining high refractive index with vanishing absorption via spontaneously generated coherence and incoherent pumping, Optics Communications 282(11), 2009, pp. 2178–2183.
  • [18] JIA-HUA LI, XIN-YOU LÜ, JING-MIN LUO, QIU-JUN HUANG, Optical bistability and multistability via atomic coherence in anN-type atomic medium, Physical Review A 74(3), 2006, article ID 035801.
  • [19] JIA-HUA LI, Controllable optical bistability in a four-subband semiconductor quantum well system, Physical Review B 75(15), 2007, article ID 155329.
  • [20] ZHIPING WANG, BENLI YU, Optical bistability in triple quantum dot molecules in weak tunneling regime, Superlattices and Microstructures 84, 2015, pp. 45–53.
  • [21] ASADPOUR S.H., SOLEIMANI H.R., Phase and thickness control of optical bistability and multistability in a defect slab with a single layer of graphene, Laser Physics Letters 13(1), 2016, article ID 015201.
  • [22] ASADPOUR S.H., SOLEIMANI H.R., Phase dependence of optical bistability and multistability in graphene nanostructure under external magnetic field, Laser Physics Letters 13(1), 2016, article ID 015204.
  • [23] ASADPOUR S.H., HAMEDI H.R., SOLEIMANI H.R., Optical bistability and multistability in an open ladder-type atomic system, Journal of Modern Optics 60(8), 2013, pp. 659–665.
  • [24] LI-GANG WANG, IKRAM M., SUHAIL ZUBAIRY M., Control of the Goos–Hänchen shift of a light beam via a coherent driving field, Physical Review A 77(2), 2008, article ID 023811.
  • [25] ZIAUDDIN, QAMAR S., Control of the Goos–Hänchen shift using a duplicated two-level atomic medium, Physical Review A 85(5), 2012, article ID 055804.
  • [26] ABBAS M, ZIAUDDIN, QAMAR S., Amplitude control of the Goos–Hänchen shift via a Kerr nonlinearity, Laser Physics Letters 11(1), 2014, article ID 015201.
  • [27] WEN-XING YANG, SHAOPENG LIU, ZHONGHU ZHU, ZIAUDDIN, RAY-KUANG LEE, Tunneling-induced giant Goos–Hänchen shift in quantum wells, Optics Letters 40(13), 2015, pp. 3133–3136.
  • [28] ZIAUDDIN, Giant Goos–Hänchen shift via spontaneous generated coherence, Journal of Modern Optics 62(19), 2015, pp. 1660–1664.
  • [29] GH SOLOOKINEJAD, JABBARI M., PANAHI M., AHMADI SANGACHIN E., Polarized control of Goos–Hänchen shifts in four-level quantized graphene nanostructures, Laser Physics 27(1), 2017, article ID 015204.
  • [30] ASADPOUR S.H., SOLEIMANI H.R., Laser polarization dependent and magnetically control of group velocity in a dielectric medium doped with nanodiamond nitrogen vacancy centers, Physica B: Condensed Matter 436, 2014, pp. 233–238.
  • [31] ZHIPING WANG, JIEYU JIANG, Sub-half-wavelength atom localization via probe absorption spectrum in a four-level atomic system, Physics Letters A 374(48), 2010, pp. 4853–4858.
  • [32] ZHIPING WANG, Control of the probe absorption via incoherent pumping fields in asymmetric semiconductor quantum wells, Annals of Physics 326(2), 2011, pp. 340–349.
  • [33] WEN-XING YANG, AI-XI CHEN, HAO GUO, YANFENG BAI, RAY-KUANG LEE, Carrier-envelope phase control electron transport in an asymmetric double quantum dot irradiated by a few-cycle pulse, Optics Communications 328, 2014, pp. 96–101.
  • [34] GOOS F, HÄNCHEN H., Ein neuer und fundamentaler Versuch zur Totalreflexion, Annalen der Physik 436(7–8), 1947, pp. 333–346.
  • [35] SATTARI H, EBADOLLAHI-BAKHTEVAR S, SAHRAI M., Proposal for a 1 × 3 Goos–Hänchen shift-assisted de/multiplexer based on a multilayer structure containing quantum dots, Journal of Applied Physics 120(13), 2016, article ID 133102.
  • [36] STENMARK T., WORD R.C., KÖNENKAMP R., Determination of the Goos–Hänchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum, Optics Express 24(4), 2016, pp. 3839–3848.
  • [37] PFLEGHAAR E, MARSEILLE A, WEIS A., Quantitative investigation of the effect of resonant absorbers on the Goos–Hänchen shift, Physical Review Letters 70(15), 1993, p. 2281.
  • [38] SHADRIVOV I.V., ZHAROV A.A., KIVSHAR Y.S., Giant Goos–Hänchen effect at the reflection from left-handed metamaterials, Applied Physics Letters 83(13), 2003, pp. 2713–2715.
  • [39] LI-GANG WANG, HONG CHEN, SHI-YAO ZHU, Large negative Goos–Hänchen shift from a weakly absorbing dielectric slab, Optics Letters 30(21), 2005, pp. 2936–2938.
  • [40] JINLONG HE, JIN YI, SAILING HE, Giant negative Goos–Hänchen shifts for a photonic crystal with a negative effective index, Optics Express 14(7), 2006, pp. 3024–3029.
  • [41] LEYONG JIANG, QINGKAI WANG, YUANJIANG XIANG, XIAOYU DAI, SHUANGCHUN WEN, Electrically tunable Goos–Hänchen shift of light beam reflected from a graphene-on-dielectric surface, IEEE Photonics Journal 5(3), 2013, article ID 6500108.
  • [42] CHANGYOU LUO, JUN GUO, QINGKAI WANG, YUANJIANG XIANG, SHUANGCHUN WEN, Electrically controlled Goos–Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure, Optics Express 21(9), 2013, pp. 10430–10439.
  • [43] ORNIGOTTI M., AIELLO A., Goos–Hänchen and Imbert–Fedorov shifts for bounded wavepackets of light, Journal of Optics 15(1), 2013, article ID 014004.
  • [44] ORNIGOTTI M., AIELLO A., Goos–Hänchen and Imbert–Fedorov shifts for astigmatic Gaussian beams, Journal of Optics 17(6), 2015, article ID 065608.
  • [45] ASIRI S., JINGPING XU, AL-AMRI M., SUHAIL ZUBAIRY M., Controlling the Goos–Hänchen and Imbert–Fedorov shifts via pump and driving fields, Physical Review A 93(1), 2016, article ID 013821.
  • [46] MERANO M., AIELLO A., HOOFT G.W.’T, VAN EXTER M.P., ELIEL E.R., WOERDMAN J.P., Observation of Goos–Hänchen shifts in metallic reflection, Optics Express 15(24), 2007, pp. 15928–15934.
  • [47] LI-GANG WANG, IKRAM M., SUHAIL ZUBAIRY M., Control of the Goos–Hänchen shift of a light beam via a coherent driving field, Physical Review A 77(2), 2008, article ID 023811.
  • [48] ZIAUDDIN, QAMAR S., Gain-assisted control of the Goos–Hänchen shift, Physical Review A 84(5), 2011, article ID 053844.
  • [49] HAMEDI H.R., RADMEHR A., SAHRAI M., Manipulation of Goos–Hänchen shifts in the atomic configuration of mercury via interacting dark-state resonances, Physical Review A 90(5), 2014, article ID 053836.
  • [50] ASADPOUR S.H., NASEHI R., SOLEIMANI H.R., MAHMOUDI M., Phase control of Goos–Hänchen shift via biexciton coherence in a multiple quantum well, Superlattices and Microstructures 85, 2015, pp. 112–123.
  • [51] JABBARI M., Goos–Hänchen shifts in a four-level quantum system near plasmonic nanostructure, Physica B: Condensed Matter 488, 2016, pp. 13–18.
  • [52] ASADPOUR S.H., Goos–Hänchen shifts due to spin-orbit coupling in the carbon nanotube quantum dot nanostructures, Applied Optics 56(8), 2017, pp. 2201–2208.
  • [53] YANNOPAPAS V., Negative index of refraction in artificial chiral materials, Journal of Physics: Condensed Matter 18(29), 2006, pp. 6883–6890.
  • [54] ZHAOLIN LU, MURAKOWSKI J.A., SCHUETZ C.A., SHOUYUAN SHI, SCHNEIDER G.J., PRATHER D.W., Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies, Physical Review Letters 95(15), 2005, article ID 153901.
  • [55] SHALAEV V.M., Optical negative-index metamaterials, Nature Photonics 1(1), 2007, pp. 41–48.
  • [56] RAMAKRISHNA S.A., GRZEGORCZYK T.M., Physics and Applications of Negative Refractive Index Materials, CRC Press, 2008.
  • [57] KLAR T.A., KILDISHEV A.V., DRACHEV V.P., SHALAEV V.M., Negative-index metamaterials: going optical, IEEE Journal of Selected Topics in Quantum Electronics 12(6), 2006, pp. 1106–1115.
  • [58] DUTTA S., DASTIDAR K.R., Study of group velocity in the negative refractive index region in three level closed Λ system via spontaneously generated coherence, Molecular Physics 110(8), 2012, pp. 431–443.
  • [59] CHUNXU LIU, JISEN ZHANG, JUNYE LIU, GUANG JIN, The electromagnetically induced negative refractive index in the Er 3+:YAlO3 crystal, Journal of Physics B: Atomic, Molecular and Optical Physics 42(9), 2009, article ID 095402.
  • [60] HONGJUN ZHANG, YUEPING NIU, SHANGQING GONG, Electromagnetically induced negative refractive index in a V-type four-level atomic system, Physics Letters A 363(5–6), 2007, pp. 497–501.
  • [61] HUIFANG ZHANG, HAIHONG REN, XIAONA YAN, LIHUA BAI, Quantum-interference and the concentration of Er3+ ion effect on left-handedness with zero absorption and large negative refractive index in Er3+:YAG crystal, Journal of Modern Optics 59(13), 2012, pp. 1133–1141.
  • [62] SHUNCAI ZHAO, ZHENGDONG LIU, QIXUAN WU, Zero absorption and a large negative refractive index in a left-handed four-level atomic medium, Journal of Physics B: Atomic, Molecular and Optical Physics 43(4), 2010, article ID 045505.
  • [63] AI-PING FANG, WENCHAO GE, MENG WANG, FU-LI LI, SUHAIL ZUBAIRY M., Negative refraction without absorption via quantum coherence, Physical Review A 93(2), 2016, article ID 023822.
  • [64] SHUN-CAI ZHAO, XIAO-FAN QIAN, YA-PING ZHANG, YONG-AN ZHANG, Negative refraction with little loss manipulated by the voltage and pulsed laser in double quantum dots, Progress of Theoretical Physics 128(2), 2012, pp. 243–250.
  • [65] ASADPOUR S.H., JABERI M., SOLEIMANI H.R., Phase control of optical bistability and multistability via spin coherence in a quantum well waveguide, Journal of the Optical Society of America B 30(7), 2013, pp. 1815–1820.
  • [66] ASADPOUR S.H., HAMEDI H.R., Giant Kerr nonlinearity in an n-doped semiconductor quantum well, Optical and Quantum Electronics 45(1), 2013, pp. 11–20.
  • [67] ASADPOUR S.H., SOLEIMANI H.R., Optical bistability and multistability via biexciton coherence in semiconductor quantum well nanostructure, Optics Communications 315, 2014, pp. 347–351.
  • [68] ASADPOUR S.H., SOLEIMANI H.R., Phase control of optical bistability based biexciton coherence in a quantum dot nanostructure, Physica B: Condensed Matter 440, 2014, pp. 124–129.
  • [69] ASADPOUR S.H., SOLEIMANI H.R., Switching from optical bistability to multistability via terahertz signal radiation in a InGaN/GaN quantum dot nanostructure, Optics Communications 321, 2014, pp. 104–109.
  • [70] ASADPOUR S.H., GOLSANAMLOU Z., SOLEIMANI H.R., Infrared and terahertz signal detection in a quantum dot nanostructure, Physica E: Low-dimensional Systems and Nanostructures 54, 2013, pp. 45–52.
  • [71] ZIAUDDIN, QAMAR S., SUHAIL ZUBAIRY M., Coherent control of the Goos–Hänchen shift, Physical Review A 81(2), 2010, article ID 023821.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-382f67a5-11ed-4d3d-bc5c-a48cd3d515cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.