PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinematic calibration of a lightweight manipulator for medical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a kinematics calibration procedure for a lightweight manipulator designed for medical applications. They comprise improving the dexterity of a dysfunctional arm of a handicapped patient in an electric wheelchair as well as supporting biopsies and surgeries. Consequently, there are several manipulator distinguishing features of the manipulator design that are relevant to kinematics calibration. In particular, these are: a small area in the workspace within which the end-effector operates, affordability for non-commercial users, a delicate, dexterous design. In this context we propose a specialized procedure that features a low cost calibration tool enabling the end-effector to reach the correct positions for data acquisition. The key parameters of the calibration tool were obtained by applying two techniques of numerical analysis, workspace clustering and arbitrary choice, and subsequent experimental verification. The procedure exploits classical results concerning the kinematics calibration and is empirically verified by comprehensive simulation and experimental studies.
Rocznik
Strony
art. no. e151381
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Cybernetics and Robotics, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Automation and Metrology, Electrical Engineering and Computer Science Faculty, Lublin University of Technology, ul. Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Accrea Medical Robotics, ul. Hiacyntowa 20, 20-143 Lublin, Poland
Bibliografia
  • [1] J.M. Hollerbach, W. Khalil, and M. Gautier, “Model identification,” in Springer Handbook of Robotics. Springer, 2016, pp. 113–138, doi: 10.1007/978-3-319-32552-1_6.
  • [2] K. Tchoń, “Calibration of manipulator kinematics,” IEEE Trans. Robot. Automat., vol. 8, no. 5, pp. 671–678, 1992, doi: 10.1109/70.163792.
  • [3] A. Goswami, A. Quaid, and M. Peshkin, “Identifying robot parameters using partial pose information,” IEEE Contr. Syst. Mag., vol. 13, no. 5, pp. 6–14, 1993, doi: 10.1109/37.236317.
  • [4] M.R. Driels and W.E. Swayze, “Automated partial pose measurement system for manipulator calibration experiments,” IEEE Tran. Robot. Automat., vol. 10, no. 4, pp. 430–440, 1994, doi: 10.1109/70.313094.
  • [5] A. Horne and L. Notash, “Pose selection for the kinematic calibration of a prototyped 4 degrees of freedom manipulator,” Trans. Can. Soc. Mech. Eng., vol. 33, pp. 619–632, 2009, doi: 10.1139/tcsme-2009-0043.
  • [6] S. Kolyubin, L. Paramonov, and A. Shiriaev, “Robot kinematics identification: KUKA LWR4+ redundant manipulator example,” J. Phys.-Conf. Ser., vol. 659, no. 1, p. 012011, 2015, doi: 10.1088/1742-6596/659/1/012011.
  • [7] S. Marie, E. Courteille, and P. Maurine, “Elasto-geometrical modeling and calibration of robot manipulators: Application to machining and forming applications,” Mech. Mach. Theory, vol. 69, pp. 13–43, 2013, doi: 10.1016/j.mechmachtheory.2013.05.003.
  • [8] P. Li, R. Zeng, W. Xie, and X. Zhang, “Relative posture-based kinematic calibration of a 6-rss parallel robot by optical coordinate measurement machine,” Int. J. Adv. Robot. Syst., vol. 15, pp. 1–14, 2018, doi: 10.1177/1729881418765861.
  • [9] B. Curtis, “Robotic arm kinematics and calibration 6-dof power-ball lwa 4p,” U.S. Army Combat Capabilities Devlopment Command Armaments Center, Benét Laboratories, Tech. Rep., Feb 2019.
  • [10] G. Tang and L. Liu, “Robot calibration using a single laser displacement meter,” Mechatronics, vol. 3, no. 4, pp. 503–516, 1993, doi: 10.1016/0957-4158(93)90020-3.
  • [11] A. Nubiola and I.A. Bonev, “Absolute calibration of an abb irb 1600 robot using a laser tracker,” Robot. Comput.-Integr. Manuf., vol. 29, no. 1, pp. 236–245, 2013.
  • [12] A. Joubair and I. Bonev, “Kinematic calibration of a six-axis serial robot using distance and sphere constraints,” Int. J. Adv. Manuf. Technol., vol. 77, p. 515–523, 2014, doi: 10.1007/s00170-014-6448-5.
  • [13] J. Li, L.-D. Yu, J.-Q. Sun, and H.-J. Xia, “A Kinematic Model for Parallel-Joint Coordinate Measuring Machine,” J. Mech. Robot., vol. 5, no. 4, p. 044501, 2013, doi: 10.1115/1.4025121.
  • [14] N. Shen et al., “Efficient Model-Free Calibration of a 5-Degree of Freedom Hybrid Robot,” J. Mech. Robot., vol. 14, no. 5, p. 051011, 2022, doi: 10.1115/1.4053824.
  • [15] Z. Wang, S. Bao, B. Zi, Z. Jia, and X. Yu, “Development of a Novel 4-DOF Flexible Endoscopic Robot Using Cable-driven Multi-segment Continuum Mechanisms,” J. Mech. Robot., vol. 16, p. 031011, 2023, doi: 10.1115/1.4057075.
  • [16] R. Ju et al., “Design, Modeling, and Kinematics Analysis of a Modular Cable-Driven Manipulator,” J. Mech. Robot., vol. 14, no. 6, p. 060903, 2022, doi: 10.1115/1.4054206.
  • [17] C. Huang, F. Xie, X.-J. Liu, and Q. Meng, “Measurement configuration optimization and kinematic calibration of a parallel robot,” J. Mech. Robot., vol. 14, pp. 1–11, 2021, doi: 10.1115/1.4053012.
  • [18] Z. Wang, B. Cao, Z. Xie, B. Ma, K. Sun, and Y. Liu, “Kinematic calibration of a space manipulator based on visual measurement system with extended Kalman filter,” Machines, vol. 11, no. 3, p. 409, 2023, doi: 10.3390/machines11030409.
  • [19] G. Boschetti and T. Sinico, “A novel step-by-step procedure for the kinematic calibration of robots using a single draw-wire encoder,” Int. J. Adv. Manuf. Technol., vol. 131, pp. 4129–4147, 2024, doi: 10.1007/s00170-024-13219-1.
  • [20] J. Peng, Y. Ding, G. Zhang, and H. Ding, “An enhanced kinematic model for calibration of robotic machining systems with parallelogram mechanisms,” Robot. Comput.-Integr. Manuf., vol. 59, pp. 92–103, 2019, doi: 10.1016/j.rcim.2019.03.008.
  • [21] A. Kurnicki and B. Stańczyk, “Development of a modular light-weight manipulator for human-robot interaction in medical applications,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, vol. 10, pp. 33–37, 2020, doi: 10.35784/iapgos.2066.
  • [22] S. Hayati and M. Mirmirani, “Improving the absolute positioning accuracy of robot manipulators,” J. Robot. Syst., vol. 2, no. 4, pp. 397–413, 1985, doi: 10.1002/rob.4620020406.
  • [23] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control, ser. Advanced Textbooks in Control and Signal Processing. Springer London, 2010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-382e6b14-9ab3-4598-a1f5-9f90538640a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.