PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dokładność transformacji harmonicznych prądów odkształconych przez indukcyjne przekładniki prądowe

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The application of power sources with a wide operating frequency range in test systems intended for testing the accuracy of current transformers
Języki publikacji
PL
Abstrakty
PL
Podstawowym czynnikiem powodującym zwiększenie wartości błędów prądowego i kątowego dla transformacji składowych wyższych częstotliwości jest zjawisko dodatkowego odkształcenia prądu wtórnego przez indukcyjny przekładnik prądowy wynikające z nieliniowości charakterystyki magnesowania jego rdzenia magnetycznego. Głównym celem tego artykułu jest potwierdzenie, że dostępne na rynku indukcyjne przekładniki prądowe mogą zapewniać dokładną transformację wyższych harmonicznych pierwotnego prądu odkształconego.
EN
The primary factor causing the increase in the values of current error and phase displacement for the transformation of higher frequency components is the phenomenon of additional distortion of the secondary current by the inductive current transformer. It results from the non-linearity of the magnetization characteristics of its magnetic core. The main purpose of this article is to confirm that the inductive current transformers available on the market can ensure accurate transformation of distorted current harmonics.
Rocznik
Strony
10--15
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • Politechnika Łódzka, Instytut Mechatroniki i Systemów Informatycznych, ul. Stefanowskiego 22, 90-537 Łódź
Bibliografia
  • 1 Kaczmarek M., Stano E., Proposal for Extension of Routine Tests of the Inductive Current Transformers to Evaluation of Transformation Accuracy of Higher Harmonics. International Journal of Electrical Power and Energy Systems 113 (2019), doi:10.1016/j.ijepes.2019.06.034.
  • 2 Murray R., de Kock J., Instrument Transformers Influence on Harmonic Measurements for Grid Code Compliance. In Proceedings of the 2018 IEEE 4th Global Electromagnetic Compatibility Conference, GEMCCon 2018; 2019.
  • 3 Kaczmarek M., Stano E., Measuring System for Testing the Transformation Accuracy of Harmonics of Distorted Voltage by Medium Voltage Instrument Transformers. Measurement (Lond) 181 (2021), doi:10.1016/j.measurement.2021.109628.
  • 4 Mingotti A., Peretto L., Bartolomei L., Cavaliere D., Tinarelli R., Are Inductive Current Transformers Performance Really Affected by Actual Distorted Network Conditions? An Experimental Case Study. Sensors 20 (2020), 927, doi:10.3390/s20030927.
  • 5 Stano E., Kaczmarek P., Kaczmarek M., Why Should We Test the Wideband Transformation Accuracy of Inductive Current Transformers? Energies (Basel) 15 (2022), doi:10.3390/en15155737.
  • 6 Crotti G., Giordano D., D’Avanzo G., Letizia P.S., Luiso M., A New Industry-Oriented Technique for the Wideband Characterization of Voltage Transformers. Measurement (Lond) 182 (2021), 109674, doi:10.1016/j.measurement.2021.109674
  • 7 Kaczmarek M., Stano E., Why Should We Test the Wideband Transformation Accuracy of Medium Voltage Inductive Voltage Transformers? Energies (Basel) 14 (2021), 4432, doi:10.3390/en14154432.
  • 8 Kaczmarek M., Stano E., The Influence of the 3rd Harmonic of the Distorted Primary Current on the Self-Generation of the Inductive Current Transformers. IEEE Access 10 (2022), 55876–55887, doi:10.1109/access.2022.3177892.
  • 9 Kaczmarek M., The Source of the Inductive Current Transformers Metrological Properties Deterioration for Transformation of Distorted Currents. Electric Power Systems Research 107 (2014), 45–50, doi:10.1016/j.epsr.2013.09.007
  • 10 Kaczmarek M., Inductive Current Transformer Accuracy of Transformation for the PQ Measurements. Electric Power Systems Research 150 (2017), 169–176, doi:10.1016/j.epsr.2017.05.006.
  • 11 IEC 61869-2, Inst. Transf. - Additional Requirements for Current Transformers; IEC: Geneva, Switzerland, (2012)
  • 12 IEEE C57.13-2016, IEEE Standard Requirements for Instrument Transformers; (2016)
  • 13 Harmonics Rms Values on the Frequency Characteristics of Ratio Error and Phase Displacement of a Wideband Voltage Divider. Electric Power Systems Research 167 (2019), doi:10.1016/j.epsr.2018.10.013.
  • 14 Wang B., Ma G., Xiong J., Zhang H., Zhang L., Li Z., Several Sufficient Conditions for Harmonic Source Identification in Power Systems. IEEE Transactions on Power Delivery 33 (2018), doi:10.1109/TPWRD.2018.2870051
  • 15 Cataliotti A., Cosentino V., A New Measurement Method for the Detection of Harmonic Sources in Power Systems Based on the Approach of the IEEE Std. 1459-2000. IEEE Transactions on Power Delivery 25 (2010), doi:10.1109/TPWRD.2009.2034480
  • 16 Stano E., Kaczmarek M., Analytical Method to Determine the Values of Current Error and Phase Displacement of Inductive Current Transformers during Transformation of Distorted Currents Higher Harmonics. Measurement 200 (2022), 111664, doi:https://doi.org/10.1016/j.measurement.2022.111664.
  • 17 Stano E., Measuring System for Testing Wideband Transformation Accuracy of Higher Harmonics of Distorted Current by Inductive Current Transformers. Przeglad Elektrotechniczny 96 (2020), doi:10.15199/48.2020.04.39.
  • 18 IEC 61869-6, Inst. Transf. - Additional General Requirements for Low-Power Instrument Transformers; Geneva, Switzerland, (2016)
  • 19 IEC 61869-10, Inst. Transf. - Additional Requirements for Low-Power Passive Current Transformers; IEC: Geneva, Switzerland, (2017)
  • 20 IEC 61869-103, Inst. Transf. - The Use of Instrument Transformers for Power Quality Measurement; IEC: Geneva, Switzerland, (2010)
  • 21 Cristaldi L., Faifer M., Laurano C., Ottoboni R., Toscani S., Zanoni M., A Low-Cost Generator for Testing and Calibrating Current Transformers. IEEE Trans Instrum Meas 68 (2019), doi:10.1109/TIM.2018.2870264
  • 22 Kaczmarek M., Kaczmarek P., Comparison of the Wideband Power Sources Used to Supply Step-up Current Transformers for Generation of Distorted Currents. Energies (Basel) 13 (2020), doi:10.3390/en13071849.
  • 23 Brodecki D., Stano E., Andrychowicz M., Kaczmarek P., Emc of Wideband Power Sources. Energies (Basel) 14 (2021), doi:10.3390/en14051457.
  • 24 Kaczmarek M.L., Stano E., Application of the Inductive High Current Testing Transformer for Supplying of the Measuring Circuit with Distorted Current. IET Electr Power Appl 13 (2019), doi:10.1049/iet-epa.2018.5803
  • 25 Kaczmarek M., Kaczmarek P., Stano E., The Performance of the High-Current Transformer during Operation in the Wide Frequencies Range. Energies (Basel) 15 (2022), doi:10.3390/en15197208.
  • 26 Crotti G., Delle Femine A., Gallo D., Giordano D., Landi C., Letizia P.S., Luiso M., Calibration of Current Transformers in Distorted Conditions. In Proceedings of the Journal of Physics: Conference Series; 2018; Vol. 1065
  • 27 Stano E., Kaczmarek P., Kaczmarek M., Understanding the Frequency Characteristics of Current Error and Phase Displacement of the Corrected Inductive Current Transformer. Energies (Basel) 15 (2022), doi:10.3390/en15155436.
  • 28 Stano E., Kaczmarek P., Kaczmarek M., Understanding the Frequency Characteristics of Current Error and Phase Displacement of the Corrected Inductive Current Transformer. Energies (Basel) 15 (2022), doi:10.3390/en15155436
  • 29 Kaczmarek M., Kaczmarek P., Stano E., Evaluation of the Current Shunt Influence on the Determined Wideband Accuracy of Inductive Current Transformers. Energies (Basel) 15 (2022), doi:10.3390/en15186840
  • 30 Kaczmarek M., Kaczmarek P., Stano E., The Effect of the Load Power Factor of the Inductive CT’s Secondary Winding on Its Distorted Current’s Harmonics Transformation Accuracy. Energies (Basel) 15 (2022), doi:10.3390/en15176258.
  • 31 Takahashi K., Yamawaki M., Tadokoro T., Current Ratio Transfer Standard and Improved Equivalent Ampere Turn Method. IEEE Trans Instrum Meas 62 (2013), 1716–1722, doi:10.1109/TIM.2013.2256711
  • 32 Cataliotti A., Cosentino V., Crotti G., Giordano D., Modarres M., Di Cara D., Tinè G., Gallo D., Landi C., Luiso M., Metrological Performances of Voltage and Current Instrument Transformers in Harmonics Measurements. In Proceedings of the I2MTC 2018-2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Proceedings; 2018; pp. 1–6.
  • 33 McLyman T., Transformer and Inductor Design Handbook, Fourth Edition; (2017)
  • 34 Ryłko M.S., Hartnett K.J., Hayes J.G., Egan M.G., Magnetic Material Selection for High Power High Frequency Inductors in DC-DC Converters. In Proceedings of the Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC; 2009
  • 35 Lesniewska E., Modern Methods of Construction Problem Solving in Designing Various Types of Instrument Transformers. Energies (Basel) 15 (2022), doi:10.3390/en15218199
  • 36 Stano E., Kaczmarek M., Wideband Self-Calibration Method of Inductive Cts and Verification of Determined Values of Current and Phase Errors at Harmonics for Transformation of Distorted Current. Sensors 20 (2020), 2167, doi:10.3390/s20082167
  • 37 Kaczmarek M., Estimation of the Inductive Current Transformer Derating for Operation with Distorted Currents. Bulletin of the Polish Academy of Sciences: Technical Sciences 62 (2014), 363–366, doi:10.2478/bpasts-2014-0036
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-382a9795-1745-406e-8982-044ab2bb9a90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.