Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Despite of applying modern biomaterials during constructing long term orthopaedic implants, in clinical practice there are still present wide range of complications, particularly concerning matter of implant - tissue interactions. Since interaction between implant and living tissue depends mainly on biomaterial surface features, we decided to modify orthopaedic alloys to improve their biological properties. The object of this experiment was in vitro evaluation of selected biological properties, particularly cytotoxicity of titanium alloy and 316L stainless steel substrates coated with SiO2 or TiO2 thin films. The coatings were synthesized by sol-gel method. Each samples was placed into mouse fibroblast culture. The cultures in presence of tested materials were maintained for three days. We found no distinct toxic effect of tested biomaterials. We noticed increase of fibroblast proliferation in cultures with uncoated titanium and particularly SiO2 coated titanium plates.
Słowa kluczowe
Czasopismo
Rocznik
Strony
129--133
Opis fizyczny
Bibliogr. 30 poz., tab., wykr., zdj.
Twórcy
autor
- Departament of Orthopaedic Surgery and Traumatology, Wroclaw Medical University 213 Borowska Str., 50-556 Wroclaw, Poland
autor
- Departament of Orthopaedic Surgery and Traumatology, Wroclaw Medical University 213 Borowska Str., 50-556 Wroclaw, Poland
autor
- Department of Histology and Embryology Wroclaw Medical University 6a T.Chalubinskiego Str., 50-368 Wroclaw, Poland
autor
- Department of Histology and Embryology Wroclaw Medical University 6a T.Chalubinskiego Str., 50-368 Wroclaw, Poland
autor
- Institute of Materials Science and Applied Mechanics, Wroclaw University of Technology 25 Smoluchowskiego Str., 50-370 Wroclaw, Poland
autor
- Department of Chemistry, Wroclaw University of Technology 4/6 Norwida Str., 50-373 Wroclaw, Poland
- Wroclaw Research Center EIT+ 147/149 Stablowicka Str., 54-066 Wroclaw, Poland
autor
- Division of Biomedical Engineering and Experimental Mechanics, Wroclaw University of Technology 7/9 Lukasiewicza Str., 50-371 Wroclaw, Poland
autor
- Division of Biomedical Engineering and Experimental Mechanics, Wroclaw University of Technology 7/9 Lukasiewicza Str., 50-371 Wroclaw, Poland
Bibliografia
- [1] Hench L., 1998 Biomaterials: a forecast for the future. Biomaterials 19 1419-1423.
- [2] Kasemo B., Lausmaa J. 1988 Biomaterial and implant surface: a surface science approach. Int J Oral Maxillofac Implants. 3:83–101.
- [3] Błażewicz S., Stoch L. 2004 Biomateriały. In (ed.) Nałęcz M Biocybernetyka i inżynieria medyczna 2000. Akademicka Oficyna Wydawnicza Exit, Vol 4, Warszawa, Poland.
- [4] Albrektsson T., Brĺnemark P-I., Hansson H.A., Kasemo .B, Larsson K., Lundström I., McQueen D.H., Skalak R. 1983 The interface zone of inorganic implants in vivo: titanium implants in bone Ann. of Biomedical Engineering; 11: 1-27.
- [5] Hench L.L,, Splinter R.J., Allen W.C., Greenlee T.K. 1972 Bonding mechanisms at the interface of ceramics prosthetic materials. J Biomed Mater Res 2:117–41.
- [6] Hench L. Bioactive ceramics 1994: Theory and clinical applications. Bioceramics 7:3–14.
- [7] Nakamura, Masanori Oka, Wei-Qi Yan, Tatsuya Goto, Takehiro Shibuya, Tadashi Kokubo, Shiro Miyaji 1996 Bone bonding behavior of titanium and its alloys when coated with titanium oxide (TiO2) and titanium silicate (Ti5Si3) Journal of Biomedical Materials Research, Vol. 32, 149-156.
- [8] Erli HJ, Ruger M, Rago C, Jahnen-Dechent W, Hollander DA, Paar O, von Walter M 2006 The effect of surface modification of a porous TiO2/perlite composite on the ingrowth of bone tissue in vivo Biomaterials 27 1270–1276.
- [9] Li P, de Groot P 1994 Better bioactive ceramics through solgel process,’’ J. Sol-Gel Sci. Tech., 2, 797–801.
- [10] Li P, de Groot P 1993 Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo J. Biomed. Mater. Res., 27, 1495–1500.
- [11] Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K, 1994 A role of hydrated silica, titania, and alumina in forming biologically active bone-like apatite on an implant J.Biomed. Mater. Res., 28, 7–15.
- [12] Anderson JM, Gristine AG, Hanson SR. 1996 Host reactions to biomaterials and their evaluation. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science; an introduction to materials in medicine, vol. 1. San Diego, CA: Academic Press;. p. 165–214.
- [13] Siebers MC, Brugge PJ, Walboomers XF, Jansen JA, 2005 Integrins as linker proteins between osteoblasts and bone replacing material. A critical review. Biomaterials 26:137–46.
- [14] Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A,Hardouin P, 2000 The relative influence of the topography and chemistry of Ti6Al4V surfaces on osteoblastic cell behavior. Biomaterials 21:1567–77.
- [15] Brunette, D.M. 1988 The effect of implant surface topography on the behaviour of cells. The International Journal of Oral & Maxillofacial Implants 3: 231–246.
- [16] Lewandowska-Szumieł MJ, postdoctoral thesis Możliwości oceny in vitro biozgodności materiałów implantacyjnych stosowanych w rekonstrukcji kości.
- [17] ISO 10993-6:1995, Biological evaluation of medical devices.
- [18] Vrowenvelder WCA, Groot CG, de Groot K. 1996 Histological and biochemical evaluation of osteoblast cultured on bioactive glass, hydroxyapatite, titanium alloy and stainless steel. J Biomed Mater Res 27:465-475.
- [19] Vallet-Reg M, Izquierdo-Barba I, Gil FJ 2003 Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol– gel treatment J Biomed Mater Res 67A: 674–678.
- [20] Dieudonne SC, van den Dolder J, de Ruijter JE, Paldan H, Peltola T, van ’t Hof MA, Happonen RP, Jansen JA 2002 Osteoblast differentiation of bone marrow stromal cells cultured on silica gel and sol–gel-derived titania Biomaterials 23 3041–3051.
- [21] Areva S, Aaritalo V, Tuusa S, Jokinen M, Linden M, Peltola T 2007 Sol-Gel-derived TiO2–SiO2 implant coatings for direct tissue attachment. Part II: Evaluation of cell response J Mater Sci: Mater Med 18:1633–1642.
- [22] Areva S, Aaritalo V, Tuusa S, Jokinen M, Linden M, Peltola T 2007 Sol-Gel-derived TiO2–SiO2 implant coatings for direct tissue attachment. Part I: design, preparation and characterization J Mater Sci: Mater Med 18:1863–1873.
- [23] Advincula CM, Firoz G, Rigoberto C. Advincula, Ada ET, Lemons JE, Bellis SL 2006 Osteoblast adhesion and matrix mineralization on sol–gel-derived titanium oxide Biomaterials 27 2201–2212.
- [24] Rossi S, Tirri T, Paldan H, Kuntsi-Vaattovaara H, Tulamo R, Närhi T 2008 Peri-implant tissue response to TiO2 surface modified implants Clin. Oral Impl. Res. 19 348–355.
- [25] Kunzler TP, Drobek T, Schuler M, Spencer ND 2007 Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients Biomaterials 28 2175–2182.
- [26] Eisenbarth E, Meyle J, Nachtigal, Breme J 1996 Influence of the surface structure of titanium materials on adhesion of fibroblasts Biomaterial 17 1399-1403.
- [27] Będziński R, Maruszewski K, Stefańska M, Krzak-Roś J, Haimann K, Kindzi-Kmiecik D, 2006 The interaction of bone tissue structures with the surface layer of implants, 23rd Danubia-Adria Symposium on Experimental Methods in Solid Mechanics, 131-132.
- [28] Krzak-Roś J, Filipiak J, Pezowicz C, Baszczuk A, Miller M, Kowalski M, Będziński R, 2009 The effect of substrate roughness on the surface structure of TiO2, SiO2 and doped thin films prepared by the sol-gel method, Acta Biomech. Bioeng. 11, 21-29.
- [29] Viitala R., Jokinen M., Peltola T., Gunnelius K., Rosenholm J.B. 2002 Surface properties of in vitro bioactive and non-bioactive sol-gel derived materials Biomaterials 23:3073-3086.
- [30] Hench L.L. 1997 Sol-gel materials for bioceramics application, Curr Opin Solid State Mater Sci 2:604-610.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-382496fc-0ebd-4b44-bc6d-deeb2556c3e0