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This paper deals with deformation in homogeneous, thermally conducting, single-crystal orthotropic twins, 
bounded symmetrically along a plane containing only one common crystallographic axis. The Fourier transforms 
technique is applied to basic equations to form a vector matrix differential equation, which is then solved by the 
eigen value approach. The solution obtained is applied to specific problems of an orthotropic twin crystal 
subjected to triangular loading. The components of displacement, stresses and temperature distribution so 
obtained in the physical domain are computed numerically. A numerical inversion technique has been used to 
obtain the components in the physical domain. Particular cases as quasi-static thermo-elastic and static thermo-
elastic as well as special cases are also discussed in the context of the problem.  
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1. Introduction 
 
 The classical uncoupled theory of thermoelasticity predicts two phenomena not compatible with the 
physical observations. First, the equation of heat conduction of this theory does not contain any elastic terms; 
second, the heat equation is of a parabolic type, predicting infinite speeds of propagation for heat waves. The 
coupling between the strain and temperature fields was first postulated by Duhamel [1] who derived 
equations for the distribution of strains in an elastic medium subjected to temperature gradients. Duhamel 
introduced the dilatation term in the equation of thermal conductivity but his equation was not on a 
thermodynamically satisfactory basis. Neumann [2], Voigt [3] and Jeffreys [4] made attempts at 
thermodynamical justification of equations of Duhamel’s theory and solved a number of interesting 
problems.  
           Biot [5] gave a satisfactory derivation of the equation of thermal conductivity which includes the 
dilatation term based on thermodynamics of irreversible processes. He formulated the theory of coupled 
thermoelasticity to eliminate the paradox inherent in the classical uncoupled theory that elastic changes have 
no effect on the temperature. The coupling between thermal and strain fields gives rise to the coupled theory 
of thermoelasticity.  
 Hetnarski [6] applied the methods of asymptotic expansions valid for, small values of time to obtain 
the solution for a thermal shock half-space problem and also solved a spherical symmetric problem with a 
point source of heat in the context of coupled thermoelasticity. 
 The equations of coupled thermoelasticity consist of two equations: the first, governing the 
displacement vector, is a wave type equation; the other, governing the temperature field, is a diffusion type 
equation. Due to the nature of the latter equation, if the elastic medium extending to infinity is subjected to 
mechanical or thermal disturbance, the effect will be felt instantaneously at infinity; this implies that a part of 
disturbance has an infinite velocity of propagation which is physically impossible. This paradox in the 
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existing coupled theory of thermoelasticity has also been discussed by Boley [7]. To overcome this drawback 
need was felt to develop the theories of generalized thermoelasticity.  
 The first is due to Lord and Shulman [8], who introduced the theory of generalized thermoelasticity 
with one relaxation time by postulating a new law of heat conduction to replace the classical Fourier law. 
This law contains the heat flux vector as well as its time derivative. 
 The second generalization of the coupled theory of thermoelasticity is what is known as the theory of 
thermoelasticity with two relaxation times or the theory of temperature-rate-dependent thermoelasticity. 
Müller [9] in a review of thermodynamics of thermoelastic solids proposed an entropy production inequality, 
with the help of which, he considered restrictions on a class of constitution equations. A generalization of 
this inequality was proposed by Green and Laws [10]. Green and Lindsay obtained an explicit version of the 
constitutive equations in [11]. 
 Dhaliwal and Sherief [12] derived the governing field equations of generalized thermoelasticity for 
anisotropic media and also developed a variational principle for these equations. Wilms and Cohen [13] 
discussed some one-dimensional problems in coupled thermoelasticity. 
 Green and Naghdi [14] proposed a new theory of thermoelasticity without energy dissipation and 
presented the derivation of a complete set of governing equations of the linearized version of the theory for 
homogenous and isotropic materials in terms of displacement and temperature fields and proved the 
uniqueness of the solutions of the corresponding initial mixed boundary value problem. An important feature 
of this theory, which is not present in other theories, is that this theory does not accommodate dissipation of 
thermal energy. 
 Dolotov and Kill [15] obtained an exact solution in closed form of the coupled dynamic problem of 
thermoelasticity for a half-space with a boundary condition of the first kind. They investigated the normal 
stress, perpendicular to the free surface, in the neighbourhood of the elastic wave front. Tzou [16] and 
Chandrasekharaiah [17] developed dual-phase-lag thermoelastic models, In these models two different 
phase-lags, i.e., one for the heat flux vector and other for the temperature gradient have been introduced in 
the Fourier’s law.   
 Hetnarski and Ignaczak [18] in their survey article examined five generalizations of the coupled 
thermoelasticity, namely Lord and Shulman [8], Green and Lindsay [11], Green and Naghdi [14], Hetnarski 
and Ignaczak [19], Chandrasekharaiah and Tzou [17, 16], and obtained a number of interesting results. 
 Ishihara et al. [20] evaluated thermal stresses in an anisotropic material during thermal shock. Kumar 
and Rani [21] investigated the disturbance due to mechanical and thermal sources in a generalized 
orthorhombic thermoelastic material. Kumar and Rani [22] considered  a two-diamensional problem of 
thermoelasticity and discussed the effects of mechanical and thermal sources in a generalized orthorhombic 
thermoelastic material. Weinmann [23] discussed equations of thermelasticity with time dependent 
coefficients. Sherief and El-Latief [24] applied the fractional order theory of thermoelasticity to a 2D 
problem for a half-space, solved it with the Laplace and exponential Fourier transform techniques and 
studied the effect of the fractional derivative parameter on the behavior of the solution. Sciarra and Salerno 
[25] discussed a consistent set of the thermodynamic functions by using the Green and Naghdi (GN) theory 
of thermoelasticity and derived free energy of GN, the thermodynamic potentials, i.e. internal energy, 
enthalpy and Gibbs free energy. Abbas et al. [26] studied ramp-type heating in a thermally conducting cubic 
crystal. Abbas [27] considered the problem of a thermoelastic infinite body with a spherical cavity in the 
context of the theory of fractional order thermoelasticity and discussed analytical solutions by using the 
eigen value approach and then graphically presented the effect of fractional parameters on physical 
quantities. El-Karamany and Ezzat [28] proposed three models of generalized thermoelasticity: a single –
phase - lag Green–Naghdi theory of type III, a dual-phase–lag Green–Naghdi theory of type II and of type III 
for a linear anisotropic inhomogeneous material. Abbas and Marin [29] established generalized 
thermoelasticity under laser pulse heating. Leseduarte et al. [30] discussed solutions for one-dimensional 
problem of thermoelasticity with two temperatures in the context of the Green-Lindsay and the Lord-
Shulman theories. They obtained existence and uniqueness of weakly regular solutions and proved the 
exponential stability in the Green-Lindsay model, but the non-exponential stability for the Lord-Shulman 
model. 
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 The present investigation is to determine the components of displacements, stresses and 
temperature distribution in a homogenous, thermally conducting twinned orthotropic thermoelastic 
material due to thermal loading in the form of triangular pulse. The problem investigated here has practical 
utility in the field of silicon based sensors, actuators, synthetic materials such as aircraft construction, 
fabric laminates, astronautics, designers and composite materials which are broadly used in civilian and 
military aircrafts. 
 
2. Basic equations 
 
 Following Dhaliwal and Sherief [12], Lord and Shulman [8] and Choudhuri [31] the field equations 
and constitutive relations for homogeneous, anisotropic thermoelasticity in the absence of body forces and 
heat sources are given by  
 

   , ,ij j it u                                                                                                          (2.1) 
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t

            
 (2.3) 

 
 The comma notation is used for spatial derivatives and dot notation represents time differentiation. 

ijkls  satisfies the (Green) symmetry conditions 

 
  .jiklijlkklijijkl ssss   

 
 Parameters in Eqs (2.1)-(2.3) are assumed to satisfy the following conditions: 
(i)    the thermal conductivity tensor  ijK  is symmetric and positive-definite;  

(ii)  the thermoelastic coupling tensor  ij  is non-singular; 

(iii) the specific heat  ec  at constant strain is positive; 
(iv) the isothermal linear elasticities are positive-definite in the sense that 
 
           ijkl ij kls e e > 0.  

 
3. Formulation and solution of the problem 
 
 We consider a homogenous, thermoelastic infinite crystal with orthotropic symmetry in the 
undeformed state at uniform temperature 0T . The infinite crystal is cut in two halves so that the plane 

interface contains one crystallographic axis (say z) and makes angle   with another crystallographic axis 
(say x), see Fig.1a; then one rotate one half-space by 180 degrees about the normal to the interface, see 
Fig.1b; finally the half-spaces are rebonded, see Fig.1c. 
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Fig.1. (a) Cutting, (b) rotating (c) bonding of an orthotropic crystal. 
 
 Another way of producing such twins would be as follows: consider the interface described in Fig.2, 
where the upper and lower half-spaces are made of the same crystal with at least orthotropic symmetry and 
with misoriented-crystallographic axes ‘x’ and ‘y’ (represented on the figure making an angle   with the 
interface and its normal) and common crystallographic axis Z (normal to the plane in Fig.2). 
 

 
 

Fig.2. Twinned crystal. 
 

 The rectangular Cartesian co-ordinate system (x, y, z) having its origin on the interface y=0 with the 
y-axis pointing into the medium is introduced. As an application, thermal loading in the form of a triangular 
pulse which depends on time t and spatial coordinate z (-  z ), is acting at some interior point of the 
infinite medium, taken as origin, i.e., the load is applied at the origin of the bi-material made of two perfectly 
bonded cubic crystal materials. Both half-spaces are made of the same crystal (mass density ). However, 
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the normal to the interface Ox2 and the direction of propagation Ox1 are inclined at an angle   to the 
crystallographic axis oy and ox of the lower (x2 > 0) half-space and at an angle -  for the upper (x2 < 0) half-
space.  
 Following Ting [32] or Destrade [33], in the lower half-space isothermal elastic parameters are given 
as  
 

   cos cos sin sin ,4 2 2 4
11 11 12 66 22s s 2s s s            

 

   cos cos sin sin ,4 2 2 4
22 22 12 66 11s s 2s s s            

 

   cos sin ,2 2
12 12 11 22 12 66s s s s 2s s            

   (3.1) 

   cos sin ,2 2
66 66 11 22 12 66s s 4 s s 2s s            

 

    sin cos cos sin cos sin ,2 2 2 2
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    cos sin cos sin cos sin .2 2 2 2
26 22 11 12 66s 2s 2s 2s s                 

 
 In the upper half-space  is changed to its opposite so that by Eqs (3.1) , , ,11 22 12 66s s s s  remains 
unchanged while s16, s26 change signs. 
 For the plane strain two-dimensional problem, we take a displacement vector     
 
   u =(u, v, 0),                                                                                                             (3.2) 
 
and T(x, y, t) as temperature change. 
 Let us assume time harmonic behavior as 
 

  (u, v, t) (x, y, t) = (u, v, t) (x, y) tie                                                                 (3.3) 
 

where   is the circular frequency. 
 Using the contracting subscript notations in Eq.(2.3) as ,  ,1 11 2 22   

,  , ,3 33 4 23 5 13 6 12     to relate ijkls  to pqs  (i, j, k, l=1, 2, 3 and p, q=1, 2……., 6). 

 Making use of pqs  from Eq.(2.3) in Eqs (2.1) and (2.2), then the field equations and constitutive 

relations for such a medium in the absence of body forces and heat sources in non-dimensional form after 
suppressing the primes can be rewritten as 
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where comma notation is  used for spatial derivatives. We have defined the quantities 
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are, respectively, the velocity of compressional waves in the x-direction 

and characteristic frequency of the medium. 

 

 The initial and regularity conditions are given by 
 
     , , , ,u x y 0 0 u x y 0   ,   

 
     , , , ,w x y 0 0 w x y 0   , 

 
     , , , ,   for ,   T x y 0 0 T x y 0 y 0 x      , (3.9) 

 
and       , , , , , ,   for     when    u x y t w x y t T x y t 0 t 0 y     . (3.10) 
 

 Applying the Fourier transforms  
 

      ,  ,  ,  ,  i xf y t f x y t e dx






   , (3.11) 

 

on the resulting expressions, we obtain    
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where 
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 Equations (3.12)-(3.14) can be written as  
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 To solve Eq.(3.15), we take 
      

     , , , qzW z X e     ,                                                                                          (3.16) 

so that 
       , , , , ,A W z qW z                                                                                        

 
which leads to an eigenvalue problem. The characterstic equation corresponding to the matrix A is given by  
 
  det[A-qI]=0,                                                                                    (3.17) 
 
which on expansion leads to 

  6 4 2
1 2 3q q q 0                                                                                             (3.18) 

where 
          1 =R15 R24+R33+R22+ R11+ R26R35, 
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  ,2 15 24 33 13 24 35 22 33 11 26 35 31 15 26 11 33 31 13 11 22R R R R R R R R R R R R R R R R R R R R           
             
   .3 22 11 33 31 13R R R R R    

 
The roots of Eq.(3.18) are  , ,q 1 2 3   . 

 The eigenvalues of the matrix A are roots of Eq.(3.17). The eigenvector X  ,   corresponding to 

the eigenvalues q  can be determined by solving the homogeneous equation 
 
  [A-qI] X( , )=0.                                                                       (3.19) 
 

The set of eigenvectors X   ,  , (=1, 2, 3, 4, 5, 6) may be obtained as 
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 The solution of Eq.(3.15) is given by 
 

            , , , exp , exp
3

3 3
1

W y B X q y B X q y 
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     (3.20)                  

 

where  , , , , ,B 1 2 3 4 5 6   are arbitrary constants. 

 Thus Eq.(3.20) represents the solution of the general problem in the plane strain case of 
homogeneous thermoelasticity by employing the eigenvalue approach and therefore it can be applied to a 
broad class of problems in the Fourier transform. Displacements and temperature distribution that satisfy the 
regularity conditions (3.10) are given by 
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               - --, , 31 2
q y q yq y

4 5 6u y B e B e B e      ,                             (3.21) 

          

     -- -, , 31 2 q yq y q y
1 1 4 2 2 5 3 3 6w y a q B e a q B e a q B e      ,               (3.22)                     

          

     -- -, , 31 2 q yq y q y
1 4 2 5 3 6T y b B e b B e b B e     .                             (3.23)                     

 
4. Application 
 

4.1. Dynamic thermoelastic case 
 

4.1a. Thermoelastic interactions due to thermal source 
 
 The boundary conditions at the plane surface are  
 

   

  ,      ,               at  ,

 , ( , ),      for the temperature gradient boundary,

  or

 ( , ) ( , ),          for the temperature input boundary

yy yxt 0 t 0 z 0

T
x y 0 r x t

z

T x y 0 r x t

  


 



 

 (4.1) 

 
where   r(x, t)= ( ) ( )x F t . 
  
 Applying the Fourier transforms defined by Eq.(3.11), we get 
       
  ( , ) ( ) ( )r F      .                                                                              
 
 Making use of Eqs (2.3), (3.7)-(3.10) in the boundary conditions given by Eq.(4.1) and with the help 
of Eqs (3.21)-(3.23), we obtain the expressions for displacement components, stresses and temperature 
distribution as 
 

  
*

( , ) ,

m
3

q z
m

m 1

0 2

e

u r
T





 

   



    

*
( , ) ,

m
3

q z
m m m

m 1

0 2

a q e

w r
T







   



    

*
( , ) ,

m
3

q z
m m

m 1
zx

0 2

s e

t r
T







  



  

   (4.2) 

  
*

( , ) ,

m
3

q z
m m

m 1
zz

0 2

p e

t r
T







  



       

 
*

 ( , )

m
3

q z
m m

m 1

0 2

b e

T r
T







   



  

where  

        * * ,1 2h      
 

       * ,1 1 3 2 2 2 3 3 2 3 3 3 3 1 1 3 2 2 1 1 2 2p m q b m q b p m q b m q b p m q b m q b        
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           *  ,2 1 2 3 3 2 2 3 1 1 3 3 1 2 2 1p m b m b p m b m b p m b m b        

       

      
, , ,1 2 3 2 3 2 2 3 1 3 3 1 2 1 2p s s p p s s p p s s p               

        

  

   
,       ,     , , .

2
12 11 a

m
11 11

i s a q s b 1 iq 1 ia
s p 1 2 3

s s

      
     

                     

 

 On replacing 
*

* *1 by  and  0
1 0 2

1

T
T

V

 
    

 
, respectively, we obtain the expressions for the temperature 

gradient boundary and temperature input boundary. 

We set a triangular pulse      

,     -      

( ) ,      

,  

a x a x 0

x a x 0 x a

0 x a

   


    
 

                                                               

in Eq.(4.2). Using Eqs (3.7)-(3.8) and applying the Fourier transform defined by Eq.(3.11), we get 
 

       
*

( ) cos ,   ,22

1

c a
2 1 0
                   

                                                              

 
and instantaneous loading as 
 
  ( ) ( ),0F t F t   
with 
  ( ) 0F F   
 
where 0F  is a constant representing the magnitude of constant temperature and ( )t  is the Dirac delta 
function. 
 
4.2. Quasi-static thermo-elastic case 
 
 In the quasi-static thermoelastic case, the variation of temperature with time is sufficiently small, the 
influence of the inertia term in Eq.(2.1) may be neglected  and we obtain the expressions for displacement 
components, stresses and temperature distribution given by Eq.(4.2) with following changed values   
 

  , .
22

1
11 22

1 3

c
R R

c c


   

 
4.3. Static thermo-elastic case 
 
 In the static thermo-elastic case, the temperature field is constant in time and we obtain the 
expressions for displacement components, stresses and temperature distribution given by Eq.(4.2) with 
following changed values as 
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  ,0      , ,
2

2
31 35 33 3

2 1

k
R R 0 R k

k k






    ,      1 =R15R24+R33+R22+R11, 

 
   2 15 24 22 11 33 11 22R R R R R R R     ,      .3 22 11 33R R R   

 
5. Special cases 
 
 Transformed solutions of Eq.(4.2) reduces to various models of thermoelasticity as: 

(1) Classical thermoelastic model - *
ijK 0 . 

(2) Dual phase-lag-model of thermoelasticity - ijK >> ijK * , *
ijK 0 . 

(3)  Lord Shulman (L-S) model - *
ijK 0 , , ,T v0 0   

 
.q            

(4) Green Lindsay (G-L) model - *
ijK 0 , , ,T v0 0   

 
.a q 0     

(4)  Coupled thermoelasticity (CT) model - *
ijK 0 , .T q v 0    

 
(5)   Uncoupled thermoelasticity (UCT) model - 1 0  , *

ijK 0 , .T q v 0    
 

(6)  Green-Nighdi (G-N) model (Type-1) - *
ijK 0 .

 
(7)  Green-Nighdi (G-N) model (Type-II)- ijK << ijK * , .T q v 0    

 
(8)  Green-Nighdi (G-N) model (Type-III)- .T q v 0      

 
6. Particular cases: 
 
6.1. Transversely isotropic materials  
 
 This type of medium has only one axis of thermal and elastic symmetry. We take the z axis along the 
axis of symmetry. Then the non-vanishing elastic and thermal parameters are 
 
  ,     ,      11 22 1 2 1 2s s K K     . 
 
6.2. Cubic crystal  
 
 For cubic crystals, the non-vanishing elastic and thermal parameters are 
 
  ,     ,      ,11 22 1 2 1 2 1 2 ts s K K K         . 
 
6.3. Isotropic media 
 
 For isotropic materials every direction is a direction of elastic as well as thermal symmetry and the 
non-vanishing elastic and thermal parameters are 
 

  

,     ,     ,      ,    

,         ( ) .

11 22 12 66 1 2 1 2

1 2 t 1 2 t

s s 2 s s K K K K K

3 2

             

              
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7. Inversion of the transforms 
 
        To obtain the solution of the problem in the physical domain, we must invert the transforms in 
Eq.(4.2) for three phase lags. These expressions are functions of z, the parameters of Fourier transforms , 

respectively, and hence  are of the form f (, y, t). To get the function f(x, z, t) in the physical domain, first 
we invert the Fourier transform using  
 

               ( , , ) ( , , ) cos( ) -  sin( )i x
e 0

0

1 1
f x y t e f y t d x f i x f d

2


  


      
                 (7.1) 

where fe and f0 are, respectively, even and odd parts of the function f (, y, t). The method for evaluating this 
integral, as described by Press et al. [34], involves the use of Romberg’s integration with an adaptive step 
size. It also uses the results from successive refinements of the extended trapezoidal rule followed by 
extrapolation of the results to the limit when the step size tends to zero. 
 
Conclusion 
 
1. A specific problems of an orthotropic twins crystal subjected to triangular loading has been studied. 
2. The Fourier transforms technique is applied to the basic equations to form a vector matrix differential 

equation, which is then solved by the eigen value approach. 
3. The expressions for displacement components, stresses and temperature distribution for the dynamic 

case, quasi-static and static cases are deduced.  
 
Nomenclature  
 
 ije   strain tensor 

 * e 11
ij

c s
K

4


  
 the material characteristic constant of the theory 

 ijkls   isothermal elastic parameters 

 T0   uniform temperature 
 T(x, y, z, t)  temperature change 
 t  time 
 ijt   stress tensor 

 ( , , )u v wu   displacement vector 

 kl   linear thermal expansion tensor 

     density 

 , , andT q a      thermal relaxation times 
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