PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minimal Conditions to Degrade Low Density Polyethylene by Aspergillus terreus and niger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plastics pollution is a major worldwide concern because there is strong evidence about marine influence on the human trophic chain. Thus, we experimented with the biodegradation of low density polyethylene (LDPE) by A. niger and A. terreus in order to increase the degradation rate without any co-substrate or photothermal treatment. Our contribution is to show how to degrade LDPE under minimum nutritional conditions using both LDPE and sucrose as carbon sources. Up to 30% weight loss was obtained by A. niger and A. terreus which were isolated from an Ecuadorian mangrove. The evidence of cracks and biomass growth on the LDPE surface samples showed the potential of both fungi species to operate under low nutrient concentrations. The outlook of the present work was focused on understanding the fungi survival under minimal conditions.
Słowa kluczowe
EN
Laccase   plastics   polymer   SEM   Czapek  
Rocznik
Strony
44--51
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Universidad Agraria del Ecuador (UAE), Environmental Engineering, Faculty of Agrarian Sciences, Av. 25 de Julio and P. Jaramillo, 59304, Guayaquil, Ecuador
  • Universidad Agraria del Ecuador (UAE), Environmental Engineering, Faculty of Agrarian Sciences, Av. 25 de Julio and P. Jaramillo, 59304, Guayaquil, Ecuador
autor
  • Instituto Nacional de Investigación en Salud Pública (INSPI) - Dr. Leopoldo Izquieta Pérez, Julián Coronel 905, Guayaquil, Ecuador
  • Universidad Agraria del Ecuador (UAE), Environmental Engineering, Faculty of Agrarian Sciences, Av. 25 de Julio and P. Jaramillo, 59304, Guayaquil, Ecuador
Bibliografia
  • 1. Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A.A., Noman, M., Muhammad, S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25(8), 7287–7298. https://doi.org/10.1007/s11356-018-1234-9
  • 2. Albertsson, A.-C., Andersson, S.O., & Karlsson, S. (1987). The mechanism of biodegradation of polyethylene. Polymer degradation and stability, 18(1), 73–87.
  • 3. Amano, Y., & Diaz, L. (2015). Introduction to Electronic Microscopy: Principles and Applications (3rd ed.). Instituto Nacional de Investigación en Salud Pública (INSPI).
  • 4. Amélineau, F., Bonnet, D., Heitz, O., Mortreux, V., Harding, A.M.A., Karnovsky, N., … Grémillet, D. (2016). Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environmental Pollution, 219, 1131–1139. https://doi.org/10.1016/j.envpol.2016.09.017
  • 5. Awasthi, S., Srivastava, P., Singh, P., Tiwary, D., & Mishra, P.K. (2017). Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech, 7(5). https://doi.org/10.1007/s13205-017-0959-3
  • 6. Bellas, J., Borerro, J., Martinez-Camara, A., Besada, V., & Martinez-Gomez, C. (2016). Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Marine Pollution Bulletin, 109(1), 55–60. https://doi.org/10.1016/j.marpolbul.2016.06.026
  • 7. Bennett, J.W. (2009). Aspergillus : a primer for the novice. Medical Mycology, 47(s1), S5–S12. https://doi.org/10.1080/13693780802712515
  • 8. Bonhomme, S., Cuer, A., Delort, A.-M., Lemaire, J., Sancelme, M., & Scott, G. (2003). Environmental biodegradation of polyethylene. Polymer Degradation and Stability, 81(3), 441–452. https://doi.org/10.1016/S0141-3910(03)00129-0
  • 9. Brijwani, K., Rigdon, A., & Vadlani, P.V. (2010). Fungal Laccases: Production, Function, and Applications in Food Processing. Enzyme Research, 2010, 1–10. https://doi.org/10.4061/2010/149748
  • 10. Chiellini, E., Corti, A., & Swift, G. (2003). Biodegradation of thermally-oxidized, fragmented lowdensity polyethylenes. Polymer Degradation and Stability, 81(2), 341–351. https://doi.org/10.1016/S0141-3910(03)00105-8
  • 11. Cole, M., Lindeque, P., Halsband, C., & Galloway, T.S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
  • 12. Das, M.P., & Kumar, S. (2014). Microbial deterioration of low density polyethylene by Aspergillus and Fusarium sp. Int J Chem Tech Res, 6(1), 299–305.
  • 13. de Vries, R.P., & Visser, J. (2001). Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiology and Molecular Biology Reviews, 65(4), 497–522. https://doi.org/10.1128/MMBR.65.4.497-522.2001
  • 14. Eriksen, M., Lebreton, L. C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., … Reisser, J. (2014). Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913
  • 15. Esmaeili, A., Pourbabaee, A.A., Alikhani, H.A., Shabani, F., & Esmaeili, E. (2013). Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil. PLoS ONE, 8(9), e71720. https://doi.org/10.1371/journal.pone.0071720
  • 16. Fujisawa, M., Hirai, H., & Nishida, T. (2001). Degradation of polyethylene and nylon-66 by the laccase-mediator system. Journal of Polymers and the Environment, 9(3), 103–108.
  • 17. Gautam, R., Bassi, A.S., & Yanful, E.K. (2007). A review of biodegradation of synthetic plastic and foams. Applied Biochemistry and Biotechnology, 141(1), 85–108.
  • 18. Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
  • 19. Hakkarainen, M., & Albertsson, A.-C. (2004). Environmental Degradation of Polyethylene. En A.-C. Albertsson (Ed.), Long Term Properties of Polyolefins (Vol. 169, pp. 177–200). https://doi.org/10.1007/b13523
  • 20. Hikmah, M., Setyaningsih, R., & Pangastuti, A. (2018). The Potential of Lignolytic Trichoderma Isolates in LDPE (Low Density Polyethylene) Plastic Biodegradation. IOP Conference Series: Materials Science and Engineering, 333, 012076. https://doi.org/10.1088/1757-899X/333/1/012076
  • 21. Ibrahim, I.N., Maraqa, A., Hameed, K.M., Saadoun, I.M., & Maswadeh, H.M. (2011). Assessment of potential plastic-degrading fungi in Jordanian habitats. Turkish Journal of Biology, 35(5), 551–557.
  • 22. Iqbal, H.M.N., Kyazze, G., Tron, T., & Keshavarz, T. (2018). Laccase from Aspergillus niger : A novel tool to graft multifunctional materials of interests and their characterization. Saudi Journal of Biological Sciences, 25(3), 545–550. https://doi.org/10.1016/j.sjbs.2016.01.027
  • 23. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., … Law, K.L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768. https://doi.org/10.1126/science.1260352
  • 24. Jung, H.-W., Yang, M.-K., & Su, R.-C. (2018). Purification, characterization, and gene cloning of an Aspergillus fumigatus polyhydroxybutyrate depolymerase used for degradation of polyhydroxybutyrate, polyethylene succinate, and polybutylene succinate. Polymer Degradation and Stability, 154, 186–194. https://doi.org/10.1016/j.polymdegradstab.2018.06.002
  • 25. Kumar, S., Hatha, A.A.M., & Christi, K.S. (2007). Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Revista de biología Tropical, 55(3–4), 777–786.
  • 26. Kyaw, B.M., Champakalakshmi, R., Sakharkar, M.K., Lim, C.S., & Sakharkar, K.R. (2012). Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian Journal of Microbiology, 52(3), 411–419. https://doi.org/10.1007/s12088-012-0250-6
  • 27. Lebreton, L.C.M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the worlds oceans. Nature Communications, 8, 15611. https://doi.org/10.1038/ncomms15611
  • 28. Leja, K., & Lewandowicz, G. (2010). Polymer Biodegradation and Biodegradable Polymers-a Review. Polish Journal of Environmental Studies, 19(2).
  • 29. Ndahebwa Muhonja, C., Magoma, G., Imbuga, M., & Makonde, H.M. (2018). Molecular Characterization of Low-Density Polyethene (LDPE) Degrading Bacteria and Fungi from Dandora Dumpsite, Nairobi, Kenya. International Journal of Microbiology, 2018, 1–10. https://doi.org/10.1155/2018/4167845
  • 30. Pathak, V.M., & Navneet. (2017). Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing, 4(1). https://doi.org/10.1186/s40643-017-0145-9
  • 31. Raaman, N., Rajitha, N., Jayshree, A., & Jegadeesh, R. (2012). Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. 1, 4.
  • 32. Restrepo-Florez, J.-M., Bassi, A., & Thompson, M. R. (2014). Microbial degradation and deterioration of polyethylene: A review. International Biodeterioration & Biodegradation, 88, 83–90. https://doi.org/10.1016/j.ibiod.2013.12.014
  • 33. Riquelme, M. (2013). Tip Growth in Filamentous Fungi: A Road Trip to the Apex. Annual Review of Microbiology, 67(1), 587–609. https://doi.org/10.1146/annurev-micro-092412-155652
  • 34. Sarmah, P., & Rout, J. (2018). Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environmental Science and Pollution Research, 25(33), 33508–33520. https://doi.org/10.1007/s11356-018-3079-7
  • 35. Tamayo Ramos, J.A., Barends, S., Verhaert, R. M., & de Graaff, L.H. (2011). The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microbial Cell Factories, 10(1), 78. https://doi.org/10.1186/1475-2859-10-78
  • 36. Tokiwa, Y., Calabia, B.P., Ugwu, C.U., & Aiba, S. (2009). Biodegradability of Plastics. International Journal of Molecular Sciences, 10(9), 3722–3742. https://doi.org/10.3390/ijms10093722
  • 37. Tribedi, P., & Sil, A.K. (2013a). Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environmental Science and Pollution Research, 20(6), 4146–4153. https://doi.org/10.1007/s11356-012-1378-y
  • 38. Tribedi, P., & Sil, A.K. (2013b). Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res, 8.
  • 39. Van Cauwenberghe, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environmental Pollution, 193, 65–70. https://doi.org/10.1016/j.envpol.2014.06.010
  • 40. Wilcox, C., Mallos, N.J., Leonard, G.H., Rodriguez, A., & Hardesty, B.D. (2016). Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife. Marine Policy, 65, 107–114. https://doi.org/10.1016/j.marpol.2015.10.014
  • 41. Worm, B., Lotze, H.K., Jubinville, I., Wilcox, C., & Jambeck, J. (2017). Plastic as a Persistent Marine Pollutant. Annual Review of Environment and Resources, 42(1), 1–26. https://doi.org/10.1146/annurev-environ-102016-060700.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-381fd4fb-be53-45e6-a0ab-aa80cea0a3ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.