PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On weak convergence of one-dimensional diffusions with time-dependent coefficients

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate stability, with respect to convergence of coefficients, of one-dimensional Itô diffussions as well as one-dimensional diffusions corresponding to second order divergence form operators. We assume that the coefficients are measurable, uniformly bounded and that the diffusion coefficients are uniformly positive.
Słowa kluczowe
Rocznik
Strony
101--117
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Faculty of Mathematics and Informatics, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
  • [1] L. A. Alyushina and N. V. Krylov, Passage to the limit in ltd stochastic equations, Theory Probab. Appl. 33 (1988), pp. 1-10.
  • [2] F. Colombini and S. Spagnolo, Sur la convergence de solutions d’équations paraboliques, J. Math. Pures Appl. 56 (1977), pp. 205-263.
  • [3] S. N. Kruzkov, Nonlinear parabolic equations with two independent variables (in Russian), Trudy Moskov. Mat. Obsc. 16 (1967), pp. 329-346.
  • [4] N. V. Krylov, Controlled Diffusion Processes, Springer, New York 1980.
  • [5] O. A. Ladyżenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic type, Transí. Math. Monographs 23, Amer. Math. Soc., Providence, R. I., 1968.
  • [6] V. G, Markov and O. A. Oleinik, On propagation of heat in one-dimensional disperse media, J. Appl. Math. Mech. 39 (1975), pp. 1028-1037.
  • [7] A. Rozkosz, Weak convergence of diffusions corresponding to divergence form operators, Stochastics Stochastics Rep. 57 (1996), pp. 129-157.
  • [8] — and L. Słomiński, On weak convergence of solutions of one-dimensional stochastic differential equations, ibidem 31 (1990), pp. 27-54.
  • [9] S. Spagnolo, Convergence of parabolic equations, Boll. Un. Mat. Ital. 14-В (1977), pp. 547-568.
  • [10] D. W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, in: Séminaire de Probabilités XXII, J. Azéma, P. A. Meyer and M. Yor (Eds.), Lecture Notes in Math. 1321, Springer, Berlin 1988, pp. 316-347.
  • [11] — and S. R. S. Varadhan, Diffusion processes, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 3, Univ. California Press, Berkeley, Calif., 1972, pp. 361-368.
  • [12] — Multidimensional Diffusion Processes, Springer, New-York 1979.
  • [13] V. У. Zhikov, S. M. Kozlov and O. A. Oleinik, G-convergence of parabolic operators, Russian Math. Surveys 36, No. 1 (1981), pp. 9-60.
  • [14] — and Kha T’en Ngoan, Averaging and G-convergence of differential operators, ibidem 34, No. 5 (1979), pp. 69-147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-381e383c-d5c5-4949-83ff-54ae6249e3d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.