PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Entropy analysis of third-grade MHD convection flows from a horizontal cylinder with slip

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In thermos fluid dynamics, free convection flows external to different geometries, such as cylinders, ellipses, spheres, curved walls, wavy plates, cones, etc., play major role in various industrial and process engineering systems. The thermal buoyancy force associated with natural convection flows can play a critical role in determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection flows from cylindrical bodies has gained exceptional interest. In this article, we mathematically evaluate an entropy analysis of magnetohydrodynamic third-grade convection flows from permeable cylinder considering velocity and thermal slip effects. The resulting non-linear coupled partial differential conservation equations with associated boundary conditions are solved with an efficient unconditionally stable implicit finite difference Keller-Box technique. The impacts of momentum and heat transport coefficients, entropy generation and Bejan number are computed for several values of non-dimensional parameters arising in the flow equations. Streamlines are plotted to analyze the heat transport process in a two-dimensional domain. Furthermore, the deviations of the flow variables are compared with those computed for a Newtonian fluid and this has important implications in industrial thermal material processing operations, aviation technology, different enterprises, energy systems and thermal enhancement of industrial flow processes.
Rocznik
Strony
417--440
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics, Madanapalle Institute of Technology and Science, Madanapalle – 517325, India
autor
  • Department of Mathematics, School of Advanced Sciences, VIT University, Vellore – 632014, Tamil Nadu, India
autor
  • Department of Mathematics, Salalah College of Technology, Salalah, Oman
  • Department of Mathematics, Vemu Institute of Technology, P. Kothakota, India
Bibliografia
  • [1] T.F. Irvine and J. Karni. Non-Newtonian fluid flow and heat transfer. Handbook of Single-Phase Convective Heat Transfer, chapter 20, Wiley New York, 20.1–20.57, 1987.
  • [2] A. Borrelli, G. Giantesio, and M.C. Patria. MHD Oblique stagnation-point flow of a micropolar fluid. Applied Mathematical Modelling, 36(9):3949–3970, 2012. doi: 10.1016/j.apm.2011.11.004.
  • [3] A. Hussain and A. Ullah. Boundary layer flow of a Walter’s B fluid due to a stretching cylinder with temperature dependent viscosity. Alexandria Engineering Journal, 55(4):3073–3080, 2016. doi: 10.1016/j.aej.2016.07.037.
  • [4] S.A. Gaffar, V.R. Prasad, and E.K. Reddy. Computational study of Jeffrey’s non-Newtonian fluid past a semi-infinite vertical plate with thermal radiation and heat generation/absorption. Ain Shams Engineering Journal, 8(2):277–294,2017. doi: 10.1016/j.asej.2016.09.003.
  • [5] A.S. Rao, C.H. Amanulla, N. Nagendra, O.A. Bég, and A. Kadir. Hydromagnetic flow and heat transfer in a Williamson non-Newtonian fluid from a horizontal circular cylinder with Newtonian heating. International Journal of Applied and Computational Mathematics, 3(4):3389–3409, 2017. doi: 10.1007/s40819-017-0304-x.
  • [6] V.R. Prasad, S.A. Gaffar, and O.A. Bég. Non-similar computational solutions for free convection boundary layer flow of a nanofluid from anisothermal sphere in a non-Darcy porous medium. Journal of Nanofluids, 4(2):203–213, 2015. doi: 10.1166/jon.2015.1149.
  • [7] H. Li and Y. Jian. Dispersion for periodic electro-osmotic flow of Maxwell fluid through a microtube. International Journal of Heat and Mass Transfer, 115:703–713, 2017. doi: 10.1016/j.ijheatmasstransfer.2017.07.065.
  • [8] S.A. Gaffar, V.R. Prasad, and O.A. Bég. Computational study of non-Newtonian Eyring-Powell fluid from a vertical porous plate with Bi number effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(7):2747–2765, 2017. doi: https://doi.org/10.1007/s40430-017-0761-5.
  • [9] S.A. Gaffar, V.R. Prasad, and E.K. Reddy. Computational study of MHD free convection flow of non-Newtonian tangent hyperbolic fluid from a vertical surface in porous media with Hall/Ionslip current and Ohmic dissipation. International Journal of Applied and Computational Mathematics, 3(2):859–890, 2017. doi: 10.1007/s40819-016-0135-1.
  • [10] R. Mehmood, S. Rana, and S. Nadeem. Transverse thermophoretic MHD Oldroyd-B fluid with Newtonian heating. Results in Physics, 8:686–693, 2018. doi: 10.1016/j.rinp.2017.12.072.
  • [11] Z-Y. Xie and Y-J. Jian. Rotating electromagnetohydrodynamic flow of power-law fluids through a microparallerl channel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529:334–345, 2017. doi: 10.1016/j.colsurfa.2017.05.062.
  • [12] T. Hayat, A. Shafiq, and A. Alsaedi. Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface. PLoS ONE 9(1):e83153. doi: 10.1371/journal.pone.0083153.
  • [13] S.A. Gaffar, V.R. Prasad, O.A. Bég, Md. H.H. Khan, and K. Venkatadri. Radiative and magnetohydrodynamics flow of third-grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:127, 2018. doi: 10.1007/s40430-018-1049-0.
  • [14] A.T. Akinshile. Steady flow and heat transfer analysis of third grade fluid with porous medium and heat generation. Engineering Science and Technology, an International Journal, 20(6):1602–1609, 2017. doi: 10.1016/j.jestch.2017.11.012.
  • [15] N. Ahmed, S.U. Jan, U. Khan, and T.M. Syed. Heat transfer analysis of third-grade fluid flow between parallel plates: analytical solutions. International Journal of Applied and Computational Mathematics, 3(2):579–589, 2017. doi: 10.1007/s40819-015-0109-8.
  • [16] T. Hayat, A. Kiran, M. Imtiaz , A. Alsaedi, and M. Ayub. Melting heat transfer in the MHD flow of a third-grade fluid over a variable-thickness surface. The European Physical Journal Plus, 132:id265, 2017. doi: 10.1140/epjp/i2017-11519-4.
  • [17] K. Ayub, M. Yaqub Khan, M. Ashraf, J. Ahmad, and Q. Mahmood-Ul-Hassan. On some results of third-grade non-Newtonian fluid flow between two parallel plates. The European Physical Journal Plus, 132:id552, 2017. doi: 10.1140/epjp/i2017-11821-1.
  • [18] M.K. Nayak, S. Shaw, and A.J. Chamkha. Radiative non-linear heat transfer analysis on wire coating from a bath of third-grade fluid. Thermal Science and Engineering Progress, 5:97–106, 2018. doi: 10.1016/j.tsep.2017.11.001.
  • [19] G.J. Reddy, A. Hiremath, and M. Kumar. Computational modeling of unsteady third-grade fluid flow over a vertical cylinder: A study of heat transfer visualization. Results in Physics, 8:671–682, 2018. doi: 10.1016/j.rinp.2017.12.054.
  • [20] T. Hayat, S. Qayyum, A. Alsaedi, and B. Ahmad. Mechanisms of double stratification and magnetic field in flow of third grade fluid over a slendering stretching surface with variable thermal conductivity. Results in Physics, 8:819–828, 2018. doi: 10.1016/j.rinp.2017.12.057.
  • [21] K. Ahmad and A. Ishak. Magnetohydrodynamic (MHD) Jeffrey fluid over a stretching vertical surface in a porous medium. Propulsion and Power Research, 6(4):269–276, 2017. doi: 10.1016/j.jppr.2017.11.007.
  • [22] F.I. Alao, A.I. Fagbade, and B.O. Falodun. Effects of thermal radiation, Soret and Dufour on an unsteady heat and mass transfer flow of a chemically reacting fluid past a semi-infinite vertical plate with viscous dissipation. Journal of Nigerian Mathematical Society, 35(1):142–58,2016. doi: 10.1016/j.jnnms.2016.01.002.
  • [23] K. Bhattacharyya and G.C. Layek. Magnetohydrodynamic boundary layer flow of nanofluid over an exponentially stretching permeable sheet. Physics Research International, 2014:id 592536, 2014. doi: 10.1155/2014/592536.
  • [24] Z-Y. Xie and Y-J. Jian. Entropy generation of two-layer magnetohydrodynamic electoosmotic flow through microparallel channels. Energy, 139:1080–1093, 2017. doi: 10.1016/j.energy.2017.08.038.
  • [25] S.A. Gaffar, V.R. Prasad, and E.K. Reddy. Magnetohydrodynamics flow of Non-Newtonian fluid from a vertical permeable cone in the presence of thermal radiation and heat generation/absorption. International Journal of Applied and Computational Mathematics, 3(4):2849–2872, 2017. doi: 10.1007/s40819-016-0262-8.
  • [26] S.A. Gaffar, V.R. Prasad, and E.K. Reddy. Magnetohydrodynamic free convection flow and heat transfer of non-Newtonian tangent hyperbolic fluid from horizontal circular cylinder with Biot number effects. International Journal of Applied and Computational Mathematics, 3(2):721–743, 2017. doi: 10.1007/s40819-015-0130-y.
  • [27] S.A. Gaffar, V.R. Prasad, and O.A. Bég. Computational analysis of magnetohydrodynamic free convection flow and heat transfer of non-Newtonian tangent hyperbolic fluid from a horizontal circular cylinder with partial slip. International Journal of Applied and Computational Mathematics, 1(4):651–675, 2015. doi: 10.1007/s40819-015-0042-x.
  • [28] S.A. Gaffar, V.R. Prasad, E.K. Reddy, and O.A. Bég. Magnetohydrodynamic free convection boundary layer flow of non-Newtonian tangent hyperbolic fluid from a vertical permeable cone with variable surface temperature. Journal of Brazilian Society of Mechanical Sciences and Engineering, 39(1):101–116, 2017. doi: 10.1007/s40430-016-0611-x.
  • [29] O.A. Bég, S.A. Gaffar, V.R. Prasad, and M.J. Uddin. Computational solutions for nonisothermal, nonlinear magneto-convection in porous media with Hall/Ionslip currents and Ohmic dissipation.Engineering Science and Technology, an International Journal, 19(1):377– 394, 2016. doi: 10.1016/j.jestch.2015.08.009.
  • [30] A. Bejan. The concept of irreversibility in heat exchanger design: counter flow heat exchangers for gas-to-gas applications. Journal of Heat Transfer, 99(3):374–380, 1977. doi: 10.1115/1.3450705.
  • [31] M.G. Sobamowo and A.T. Akinshilo. Analysis of flow, heat transfer and entropy generation in a pipe conveying fourth grade fluid with temperature dependent viscosities and internal heat generation. Journal of Molecular Liquids, 241:188–198, 2017. doi: 10.1016/j.molliq.2017.05.145.
  • [32] M.M. Rashidi, S. Bagheri, E. Momoniat, and N. Freidoonimehr. Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Engineering Journal, 8(1):77–85, 2017. doi: 10.1016/j.asej.2015.08.012.
  • [33] S. Baag, S.R. Mishra, G.C. Dash, and M.R. Acharya. ntropy generation analysis for viscoelastic MHD flow over a stretching sheet embedded in a porous medium. Ain Shams Engineering Journal, 8(4):623–632, 2017. doi: 10.1016/j.asej.2015.10.017.
  • [34] T. Hayat, M.W. Ahmed Khan, M. Ijaz Khan, and A. Alsaedi. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate. Physica B: Condensed Matter, 538:95–103, 2018. doi: 10.1016/j.physb.2018.01.054.
  • [35] M. Qasim, Z. Hayat Khan, Ilyas Khan, and Q.M. Al-Mdallal. Analysis of entropy generation in flow of methanol-based nanofluid in a sinusoidal wavy channel. Entropy, 19(10):490,2017. doi: 10.3390/e19100490.
  • [36] P. Rana, N. Shukla, O.A. Bég, A. Kadir, and B. Singh. Unsteady electromagnetic radiative nanofluid stagnation-point flow from a stretching sheet with chemically reactiven a noparticles, Stefan blowing effect and entropy generation. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2018. doi: 10.1177/2397791418782030.
  • [37] S.E. Ahmed, M.A. Mansour, A. Mahdy, and S.S. Mohamed. Entropy generation due to double diffusive convective flow of Casson fluids over nonlinearity stretching sheets with slip conditions. Engineering Science and Technology, an International Journal, 20(6):1553–1562, 2017. doi: 10.1016/j.jestch.2017.10.002.
  • [38] E.M. Sparrow and S.H. Lin. Laminar heat transfer in tubes under slip-flow conditions. Journal of Heat Transfer, 84(4):363–369, 1962. doi: 10.1115/1.3684399.
  • [39] D. Srinivasacharya and K. Hima Bindu. Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions. Energy, 111:165–177, 2016. doi: 10.1016/j.energy.2016.05.101.
  • [40] M.K. Nayak, S. Shaw, V.S. Pandey, and A.J. Chamkha. Combined effects of slip and convective boundary conditions on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. Indian Journal of Physics, 92(9):1017–1028, 2018. doi: 10.1007/s12648-018-1188-2.
  • [41] M. Qayyum, H. Khan, and O. Khan. Slip analysis at fluid-solid interface in MHD squeezing flow of Casson fluid through porous medium. Results in Physics, 7:732–750, 2017. doi: 10.1016/j.rinp.2017.01.033.
  • [42] D. Srinivasacharya and K. Himabindu. Effect of slip and convective boundary conditions on entropy generation in a porous channel due to micropolar fluid flow. International Journal of Nonlinear Sciences and Numerical Simulation, 19(1):11–24, 2018. doi: 10.1515/ijnsns-20160056.
  • [43] S.A. Gaffar, V.R. Prasad, E.K. Reddy, and O.A. Bég. Free convection flow and heat transfer of non-Newtonian tangent hyperbolic fluid form an isothermal sphere with partial slip. Arabian Journal for Science and Engineering, 39(11):8157–8174, 2014. doi: 10.1007/s13369-014-13105.
  • [44] S.A. Gaffar, V.R. Prasad, and O.A. Bég. Free convection flow and heat transfer of tangent hyperbolic fluid past a vertical porous plate with partial slip. Journal of Applied Fluid Mechanics, 9(4):1667–1678, 2016. doi: 10.18869/acadpub.jafm.68.235.24718.
  • [45] R.B. Bird, R.C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics. 2nd edition, Wiley Interscience, New York, 1987.
  • [46] R.G. Larson. Constitutive Equations for Polymer Melts and Solutions. Butterworths, Boston, 1988. doi: 10.1016/C2013-0-04284-3.
  • [47] C. Truesdell and W. Noll. The Non-Linear Field Theories of Mechanics. 3rd edition, Springer Verlag, Berlin, 2004. doi: 10.1007/978-3-662-10388-3.
  • [48] H.B. Keller. Numerical methods in boundary-layer theory. Annual Review of Fluid Mechanics, 10:417–433, 1978. doi: 10.1146/annurev.fl.10.010178.002221.
  • [49] M.S. Abel, P.S. Datti, and N. Mahesha. Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source. International Journal of Heat and Mass Transfer, 52(11–12):2902–2913, 2009. doi: 10.1016/ j.ijheatmasstransfer.2008.08.042.
  • [50] S.A. Gaffar, V.R. Prasad, B.R. Kumar, and O.A. Bég. Computational modelling and solutions for mixed convection boundary layer flows of nanofluid from a non-isothermal wedge.Journal of Nanofluids, 7(5):1024–1032, 2018. doi: 10.1166/jon.2018.1522.
  • [51] S.A. Gaffar, V.R. Prasad, E.K. Reddy, and O.A. Bég. Thermal radiation and heat generation/absorption effects on viscoelastic double-diffusive convection from an isothermal sphere in porous media. Ain Shams Engineering Journal, 6(3):1009–1030, 2015. doi: 10.1016/j.asej.2015.02.014.
  • [52] Y.L. Zhangand, K. Vairavamoorthy. Analysis of transient flow in pipelines with fluid–structure inter action using method of lines. International Journal for Numerical Methods in Engineering, 63(10):1446–1460, 2005. doi: 10.1002/nme.1306.
  • [53] S.A. Gaffar, V.R. Prasad, and E.K. Reddy. MHD free convection flow of Eyring-Powell fluid from vertical surface in porous media with Hall/Ionslip currents and Ohmic dissipation. Alexandria Engineering Journal, 55(2):875–905, 2016. doi: 10.1016/j.aej.2016.02.011.
  • [54] J.H. Merkin. Free convection boundary layers on cylinders of elliptic cross section. Journal of Heat Transfer, 99(3):453–457, 1977. doi: 10.1115/1.3450717.
  • [55] K.A. Yih. Effect of blowing/suction on MHD-natural convection over horizontal cylinder: UWT or UHF. Acta Mechanica, 144(1–2):17–27, 2000. doi: 10.1007/BF01181825.
  • [56] C.H. Amanulla, N. Nagendra, and M.S. Reddy. Numerical simulation of slip influence on electric conducting viscoelastic fluid past an isothermal cylinder. Frontiers in Heat and Mass Transfer, 10, 10, 2018. doi: 10.5098/hmt.10.10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-381ccaf5-60e4-4faf-a7c6-3921b40bde2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.