PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Study of the Effect of the Trailing-Edge Devices (Gurney Flap and Divergent Trailing-edge Flap) on the Aerodynamic Characteristics of an Airfoil in Transonic Flow for Drone Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the effects of mini Trailing-Edge Devices (mini TEDs) on the aerodynamic characteristics of the RAE 2822 airfoil. Using ANSYS Fluent software, numerical simulations were conducted to analyze the compressible flow around the airfoil at Mach number (Ma) 0.73, considering different angles of attack. The mini TEDs used in the simulation were a Gurney flap and a divergent trailing-edge. The results show that the integration of these mini TEDs at the trailing edge leads to a significant increase in both lift coefficient (CL) and drag coefficient (CD) but, for certain angles of attack, an improvement in the lift-to-drag ratio of the airfoil was obtained. The results showed the potential benefits of using mini TEDs to improve aerodynamic performance in aerospace drone applications.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Didwania M., Khatri K.K. Analysis of Stalling Over FLAPED Wing of an Aeroplane by CFD Code Analysis of Stalling Over FLAPED Wing of an Aeroplane by CFD Code 2021; May. doi: 10.9790/1684-1604044554.
  • 2. Ko S., Bae J., Abdelrahman A., Wang L. Aerodynamic performance analysis of a trailing- edge flap for wind turbines Aerodynamic performance analysis of a trailing-edge flap for wind turbines.
  • 3. Bechert D.W., Meyer R., Hage W., Drag reduction on gurney flaps and divergent trailing edges, 2001; 229–245.
  • 4. Gopalakrishnan Meena M., Taira K., Asai K. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number. AIAA Journal, 2018; 56(4): 1348–1359. doi: 10.2514/1.J056260.
  • 5. Cole J.A., Vieira B.A.O., Coder J.G., Premi A., Maughmer M.D. Experimental investigation into the effect of gurney flaps on various airfoils. Journal of Aircraft, 2013; 50(4), 1287–1294. doi: 10.2514/1.C032203.
  • 6. Wang J.J., Li Y.C., Choi K.-S. Gurney flap – Lift enhancement, mechanisms and applications . Progress in Aerospace Sciences, 2008; 44(1): 22–47. doi: 10.1016/j.paerosci.2007.10.001.
  • 7. Alber J., et al., Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance, 2022; 943–965.
  • 8. Singh D.A.I., Effect of Gurney flap on the vortex - dominated flow over low - AR wings, 2023.
  • 9. Liebeck R.H., Design of subsonic airfoils for high lift. Journal of Aircraft, 1978; 15( 9): 547–561. doi: 10.2514/3.58406.
  • 10. Poole D.J., Allen C.B., Rendall T.C.S., Comparison of point design and range-based objectives for transonic aerofoil optimization. AIAA Journal, 2018; 56(8), 3240–3256. doi: 10.2514/1.J056627.
  • 11. Yu T., Wang J.J., and Zhang P.F., Numerical simulation of gurney flap on RAE-2822 supercritical airfoil, Journal of Aircraft, 2011; 48(5), 1565–1575, doi: 10.2514/1.C031285.
  • 12. Thompson B.E., Lotz R.D., Divergent-trailing-edge airfoil flow. Journal of Aircraft, 1996; 33(5), 950– 955. doi: 10.2514/3.47040.
  • 13. Yu T., Wang J.J., Zhang P.F. Numerical Simulation of Gurney Flap on RAE-2822 Supercritical Airfoil. Journal of Aircraft, 2011; 48(5): 1565–1575. doi: 10.2514/1.C031285.
  • 14. Chandrasekhara M.S., Optimum Gurney flap height determination for ‘lost-lift’ recovery in compressible dynamic stall control. Aerospace Science and Technology, 2010; 14(8), 551–556. doi: 10.1016/j. ast.2010.04.010.
  • 15. Maughmer M.D., Bramesfeld G. Experimental Investigation of Gurney Flaps. Journal of Aircraft, 2008; 45(6), 2062–2067. doi: 10.2514/1.37050.
  • 16. Giguere P., Lemay J., Dumas G. Gurney flap effects and scaling for low-speed airfoils, Jun., 1995. doi: 10.2514/6.1995-1881.
  • 17. Li Y., Wang J., Zhang P. Influences of Mounting Angles and Locations on the Effects of Gurney Flaps. Journal of Aircraft, 2003; 40(3), 494–498. doi: 10.2514/2.3144.
  • 18. Richter K., Rosemann H. Steady Aerodynamics of Miniature Trailing-Edge Devices in Transonic Flows, Jun., 2011. doi: 10.2514/6.2011-3354.
  • 19. Akdeniz H.Y. International Journal of Aviation A Study on Aerodynamic Behavior of Subsonic UAVs ’ Wing Sections with Flaps, 2021; 2(1), 22–27. doi: 10.23890/IJAST.vm02is01.0103.
  • 20. Speeds T. Aerodynamic Loads Alteration by Gurney Flap on Supercritical Airfoils at Aerodynamic Loads Alteration by Gurney Flap on Supercritical Airfoils at Transonic Speeds no. September 2018, 2019.
  • 21. Yoo Y. Aerodynamic Performance Improvement by Divergent Trailing Edge Modification to a Supercritical Airfoil + M, 2001; 15(10): 1434–1441.
  • 22. Makgantai B., A Review on Wingtip Devices for Reducing Induced Drag on Fixed-Wing Drones, 13(11): 143–160.
  • 23. Hassanalian M., Abdelkefi A. Classifications, applications, and design challenges of drones: A review, Progress in Aerospace Sciences, 2017; 91(May): 99–131. doi: 10.1016/j.paerosci.2017.04.003.
  • 24. Valavanis G.J., Vachtsevanos K. Handbook of Unmanned Aerial Vehicles. Springer Netherlands, 2015.
  • 25. Winiarski P., Pods S., Szwedziak K., Łusiak T., Robert B. Wind Tunnel Experiments on an Air craft Model Fabricated Using a 3D Printing Technique, 2022.
  • 26. Setlak L., Kowalik R., Practical Use of Composite Materials Used in Military Aircraft 2021.
  • 27. Hirsch C., Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons, Inc., 1991.
  • 28. Wilcox D.C Turbulence Modeling for CFD, Third Edft. Canada, CA, USA: DCW Industries, 2006.
  • 29. He X. et al., Numerical Simulation of Gurney Flap on SFYT15thick Airfoil, 2016. doi: 10.1016/j. taml.2016.09.002.
  • 30. M.A.M. and M.C.P.F.P.H. Cook Aerofoil Rae 2822: Pressure Distributions, and Boundary Layer and Wake Measurements, Experimental Data Base for Computer Program Assessment, AGARD Report ar 138, 1979.
  • 31. Coakley T. Numerical simulation of viscous transonic airfoil flows, Mar. 1987, doi: 10.2514/6.1987-416.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-381a8331-8990-458d-be4e-419e523fbff1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.