PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of sand electrification influence on locomotive wheel/ rail adhesion processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wpływu elektryzacji piasku na przyczepność w punkcie styku koła pociągu z szyną
Języki publikacji
EN
Abstrakty
EN
The article describes a method of increasing the adhesion of the wheel to the rail based on the preliminary electrification of the abrasive-air mixture before its feed into a contact. A simulation model of the movement of sand in the system “injecting nozzle of a sandbox - a rail” is presented. The effectiveness of the proposed method to improve adhesion is confirmed experimentally. The results of experiments carried out on a friction machine, which characterize the change in friction ratio depending on the temperature with different methods of sand supply, are presented. The reduction in the consumption of sand caused by its electrification and the supply of a rational amount of abrasive substance into the contact of the wheel with the rail is estimated.
PL
W artykule opisano metodę zwiększania przyczepności koła pociągu do szyny polegającą na wstępnej elektryzacji mieszaniny powietrza i substancji ściernej przed jej podaniem pod koła w punkcie styku koła z szyną. Przedstawiono symulacyjny model ruchu piasku w układzie "dysza wtryskowa piasecznicy-szyna". Skuteczność proponowanej metody poprawy przyczepności badano doświadczalnie. Przedstawiono wyniki eksperymentów przeprowadzonych na maszynie ściernej, które pokazują zmiany współczynnika tarcia w zależności od temperatury przy różnych metodach podawania piasku. Oszacowano jaki wpływ na stopień zmniejszenia zużycia piasku wywiera jego wcześniejsza elektryzacja oraz racjonalne dozowanie.
Rocznik
Strony
460--467
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Volodymyr Dahl East Ukrainian National University, pr. Central 59-a, 93400, Severodonetsk, Ukraine
  • University of Žilina, Univerzitná 8215/1 010 26 Žilina, Slovak Republic
  • Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, 03224 Vilnius, Lithuania
  • University of Žilina, Univerzitná 8215/1 010 26 Žilina, Slovak Republic
  • Volodymyr Dahl East Ukrainian National University, pr. Central 59-a, 93400, Severodonetsk, Ukraine
  • Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, 03224 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, 03224 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, 03224 Vilnius, Lithuania
Bibliografia
  • 1. Arias-Cuevas O, Li Z. Field investigations into the adhesion recovery in leaf-contaminated wheel–rail contacts with locomotive sanders. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2011; 225: 442-456, https://doi.org/10.1177/2041301710394921.
  • 2. Arias-Cuevas O, Li Z, Lewis R. Investigating the lubricity and electrical insulation caused by sanding in dry wheel-rail contacts. Tribology Letters 2010; 37: 623–635, https://doi.org/10.1007/s11249-009-9560-1.
  • 3. Autumn Adhesion Investigation Part 3: Review of adhesion-related incidents autumn, 2005. Rail Accident Investigation Branch: Rail Accident Report, Report 25 (Part 3), 2006. https://www.gov.uk/government/publications/raib-investigation-reports-2007.
  • 4. Blatnicky M, Barta D, Dizo J, Drozdziel P. Diagnosing of fatigue lifespan using the modern method of welding simulating. Diagnostyka 2017; 18(4): 19-26.
  • 5. Chen H, Ban T, Ishid, M, Nakahara T. Experimental investigation of influential factors on adhesion between rail and wheel under wet conditions. Wear 2008; 265: 1504–1511, https://doi.org/10.1243/09544097JRRT248.
  • 6. Cortis D, Giulianelli S, Malavasi G, Rossi S. Self-diagnosis method for checking the wayside systems for wheel-rail vertical load measurement. Transport Problems 2017; 12 (4): 91-100.
  • 7. Dižo J, Blatnický M, Steišūnas S, Skočilasová B. Assessment of a rail vehicle running with the damaged wheel on a ride comfort for passengers. Open Access proceedings in Materials Science, Engineering and Chemistry. Machine Modelling and Simulations 2017; 157: 1-11.
  • 8. Gerlici J, Lack T. Contact geometry influence on the rail/ wheel surface stress distribution. The 4th international fatigue congress – Fatigue 2010. Procedia Engineering 2010; 2: 2249–2257, https://doi.org/10.1016/j.proeng.2010.03.241.
  • 9. Gerlici J, Gorbunov M, Kravchenko K, Kostyukevich A, Nozhenko O, Lack T. Experimental rigs for wheel/rail contact research. Manufacturing Technology 2016; 16 (5): 909-916.
  • 11. Haas S. Verbesserung des Haftwerts zwischen Rad und Schiene durch fahrzeugseitige Ma durch fahrzeugseitige Maßnahmen. Schienenfahrzeugtagung, Graz 2005; 24 p.
  • 12. Harrison H, McCanney T, Cotter J. Recent developments in coefficient of friction measurements at the rail/ wheel interface. Wear 2002; 253: 114–123, https://doi.org/10.1016/S0043-1648(02)00090-X.
  • 13. Hauser V, Nozhenko OS, Kravchenko KO, Loulová M, Gerlici J, Lack T. Impact of wheelset steering and wheel profile geometry to the vehicle behaviour when passing curved track. Manufacturing Technology 2017; 17 (3): 306-312.
  • 14. Hockney R, Eastwood J. Numerical simulation by the particle method. Taylor and Francis Group. New Yor 1988; 640 p. https://www.amazon.com/Computer-Simulation-Using-Particles-Hockney/dp/0852743920#reader_0852743920.
  • 15. Hsu S, Huang Z, Iwnicki S, Thompson D, Jones C, Xie G, Allen P. Experimental and theoretical investigation of railway wheel squeal. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2007; 221: 59–73, https://doi.org/10.1243/0954409JRRT85.
  • 16. Ishizaka K, Lewis SR, Lewis, R. The Low Adhesion Problem due to Leaf Contamination in the Wheel/Rail Contact: Bonding and Low Adhesion Mechanisms. Wear 2017; 378-379: 183–197, https://doi.org/10.1016/j.wear.2017.02.044.
  • 17. Jin XS, Zhang WH, Zeng J, Zhou ZR, Liu QY, Wen Z F. Adhesion experiment on a wheel–rail system and its numerical analysis. Proceedings of the Institution of Mechanical Engineers, Part J; Journal of Engineering Tribology, 2004; 218(J1): 293–303, https://doi.org/10.1243/1350650041762631.
  • 18. Kravchenko KO. The grounds of increase backlogs of locomotive hauling qualities and its realization by the management of sliding in the system of wheel with a rail. PhD Dissertation. Volodymyr Dal East-Ukrainian National University, Lugansk 2010; 215 p.
  • 19. Kumar S, Krishnamoorthy PK, Prasanna Rao DL. Wheel–rail wear and adhesion with and without sand for a north American locomotive. Journal of Engineering for Industry 1986; 108: 141–147, https://doi.org/10.1115/1.3187049.
  • 20. Lewis R, Dwyer-Joyce RS. Wear at the wheel/rail interface when sanding is used to increase adhesion. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2006; 220: 29-41, https://doi.org/10.1243/095440905X33260.
  • 21. Lewis R, Dwyer-Joyce RS, Lewis SR, Hardwick C, Gallardo-Hernandez EA. Tribology of the Wheel-Rail Contact: The Effect of Third Body Materials. International Journal of Railway Technology 2012; 1(1): 167-194, https://doi.org/10.4203/ijrt.1.1.8.
  • 22. Lewis R, Gallardo-Hernandez EA, Hilton T, Armitage T. Effect of oil and water mixtures on adhesion in the wheel/rail contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009; 223: 275-283, https://doi.org/10.1243/09544097JRRT248.
  • 23. Lewis SR, Riley S, Fletcher DI, Lewis R. Optimisation of a railway sanding system, Part 2: Adhesion Tests. The International Conference on Contact Mechanics CM 2015, Colorado Springs, Colorado, USA, 2015.
  • 24. Lewis SR, Riley S, Fletcher DI, Lewis R. Optimisation of a railway sanding system for optimal grain entrainment into the wheel–rail contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2018; 232(1): 43–62, https://doi.org/10.1177/0954409716656220.
  • 25. Liudvinavičius L, Bureika G. Theoretical and practical perspectives of diesel locomotive with DC traction motors wheel-sets' slipping and sliding control. Transport 2011; 26 (4): 335-343, https://doi.org/10.3846/16484142.2011.633339.
  • 26. Liudvinavičius L, Lingaitis LP, Bureika G. Investigation on wheel-sets slip and slide control problems of locomotives with AC traction motors. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2011; 4: 21-28.
  • 27. Liu X, Meehan PA. Investigation of the effect of relative humidity on lateral force in rolling contact and curve squeal. Wear 2014; 310: 12–19, https://doi.org/10.1016/j.wear.2013.11.045.
  • 28. Magheri S, Malvezzi M, Meli E, Rindi A. An innovative wheel–rail contact model for multibody applications. Wear 2011; 271: 462–471, https://doi.org/10.1016/j.wear.2010.10.038.
  • 29. Marko MD, Kyle JP, Wang Y.S, Terrell EJ. Tribological investigations of the load, temperature, and time dependence of wear in sliding contact. Public Library of Science 2017; 12(4): e0175198, https://doi.org/10.1371/journal.pone.0175198.
  • 30. Olofsson U, Sundvall K. Influence of leaf, humidity and applied lubrication on friction in the wheel–rail contact: pin-on-disc experiments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2004; 218: 235–242, https://doi.org/10.1243/0954409042389364.
  • 31. Polach O. Creep forces in simulations of traction vehicles running on adhesion limit. Wear 2005; 258: 992–1000, https://doi.org/10.1016/j.wear.2004.03.046.
  • 32. Saffman PG. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics 2008; 22 (2): 385-400, https://doi.org/10.1017/S0022112065000824.
  • 33. Smetanka L, Št'astniak P, Harušinec J. Wear research of railway wheelset profile by using computer simulation. Open Access proceedings in Materials Science, Engineering and Chemistry. Machine Modelling and Simulations 2018. 157: 1-9.
  • 34. Tao G, Wen Z, Zhao X, Jin X. Effects of wheel–rail contact modelling on wheel wear simulation. Wear 2016; 366-367: 146–156, https://doi.org/10.1016/j.wear.2016.05.010.
  • 35. Wang WJ, Lewis R, Yang B, Guo LC, Liu QY, Zhu MH. Wear and damage transitions of wheel and rail materials under various contact conditions. Wear 2016; 362 (36): 146-152. ISSN 0043-1648, https:// doi.org/10.1016/j.wear.2016.05.021.
  • 36. Zhang W, Chen J, Wu X, Jin X. Wheel/rail adhesion and analysis by using full scale roller rig. Wear 2002; 253: 82–88, https://doi.org/10.1016/S0043-1648(02)00086-8.
  • 37. Вараскин АЮ. Турбулентное течение газа с твердыми частицами. Москва: ФИЗМАТЛИТ 2003; 192 с.
  • 38. Голубенко ОЛ. Зчеплення колеса з рейкою: Моногр.; Фірма «ВІПОЛ», Киев 1993; 443 с.
  • 39. Дмитриев ВЕ. Заряженное состояние адсорбентов и их применение в энергетике при экстремальных условиях: автореферат дис. к.т. н. : 05.14.02, 01.04.13. Новосибирск, НГАВТ, 2000; 8 с.
  • 40. Костюкевич АИ. Численная и экспериментальная идентификация процесса сцепления колес локомотива с рельсами: автореф. дис. к.т.н. : 05.22.07, Луганск, ВМИ 1991; 14 с.
  • 41. Осенін ЮІ, Марченко ДМ, Шведчікова ІО. Фрикційна взаємодія колеса з рейкою. Луганск: Вид-во СУДУ 1997; 227 с.
  • 42. Проволоцкий АЕ, Нарбутович-Кащенко АН. Развитие технологий струйной обработки. Збірник наукових праць. Сучасні технології в машинобудуванні, 2008. http://www.nbuv.gov.ua/portal/natural/Stvm/2008_1/articles\13.htm
  • 43. Фуфрянский НА, Долганов АН, Нестрахов АС. Развитие локомотивной тяги. Москва: Транспорт 1988; 344 с.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3818a0bc-bd8b-4749-b2a5-55154aecf924
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.