Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Fe-40wt% TiB2 nanocomposites were fabricated by mechanical activation and spark-plasma sintering of a powder mixture of iron boride (FeB) and titanium hydride (TiH2). The powder mixture of (FeB, TiH2) was prepared by high-energy ball milling in a planetary ball mill at 700 rpm for 3 h followed by spark-plasma sintering (SPS) at various conditions. Analysis of the change in relative sintered density and densification rate during sintering showed that a self-propagating high-temperature synthesis reaction occurs to form TiB2 from FeB and Ti. A sintered body with relative density higher than 98% was obtained after sintering at 1150°C for 5 and 15 min. The microstructural observation of sintered compacts with the use of FE-SEM and TEM revealed that ultrafine particulates with approximately 5 nm were evenly distributed in an Fe-matrix. A hardness value of 83 HRC was obtained, which is equivalent to that of conventional WC-20 Co systems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1043--1047
Opis fizyczny
Bibliogr. 17 poz., fot., rys.
Twórcy
autor
- Industrial University of Ho Chi Minh City, Faculty of Mechanical Technology, Ho Chi Minh City, Vietnam
autor
- University of Ulsan, School of Electrical Engineering, Ulsan 44610, Republic of Korea
autor
- University of Ulsan, School of Materials Science and Engineering, Ulsan 44610, Republic of Korea
Bibliografia
- [1] B. Du, Z. Zou, X. Wang, S. Qu, Ap pl. Surf. Sci. 254, 6489-6494 (2008).
- [2] B. Du, Z. Zou, X. Wang, S. Qu, Mat. Lett. 62, 689-691 (2008).
- [3] M. Darabara, G. D. Papadimitriou, L. Bourithis, Surf. Coat. Technol. 201, 3518-3523 (2006).
- [4] W. Xibao, W. Xiaofeng, S. Zhongquan, Surf. Coat. Technol. 192, 257-262 (2005).
- [5] A. Anal, T. K. Bandyopadhyay, K. Das, J. Mater. Process. Technol. 172, 70-76 (2006).
- [6] B. Li, Y. Liu, H. Cao, L. He, J. Li, J. Mater. Sci. 44, 3909-3912 (2009).
- [7] O. K. Lepakova, L. G. Raskolenko, Y. M. Maksimov, Combust. Explos. Shock Waves 36, 575-581 (2000).
- [8] C. C. Degnan, P. H. Shipway, Metall. Mater. Trans. A 33, 2973-2983 (2002).
- [9] L. Gai, M. Ziemnicka-Sylwester, Int. J. Refract. Met. Hard Mater. 45, 141-146 (2014).
- [10] O. K. Lepakova, L. G. Raskolenko, Y. M. Maksimov, J. Mater. Sci. 39, 3723-3732 (2004).
- [11] R. M. Aikin, JOM 49, 35-39 (1997 ).
- [12] X. K. Huynh, S. W. Bae, J. S. Kim, Korean J. Met. Mater. 55, 10-15 (2017).
- [13] X. K. Huynh, J. S. Kim, J. Korean Powder Metall. Inst. 23, 282-286 (2016).
- [14] N. Saheb, Z. Iqbal, A. Khalil, A. S. Hakeem, N. A. Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, Journal of Nanomaterials 2012, Article ID 983470, 13 pages (2012).
- [15] X. K. Huynh, Fabrication of Fe-TiB2 Nanocomposite with Use of High-energy Milling Followed by in situ Reaction Synthesis and Sintering, PhD Thesis, University of Ulsan, Ulsan, Korea
- [16] O. K. Lepakova, L. G. Raskolenko, Y. M. Maksimov, Combust. Explos. Shock Waves 36, 575-581 (2000).
- [17] C. C. Degnan, P. H. Shipway, Metall. Mater. Trans. A 33, 2973-2983 (2002).
Uwagi
EN
1. This work was supported by the 2016 Research Fund of University of Ulsan.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3817c0a4-08a7-454c-84d5-110920770bad