PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance and Emission of the Aircraft with Hybrid Propulsion During Take-Off Operation Cycle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the energy consumption and emissions of pollutants in the exhausts during the take-off operation mission of a Short Take-Off and Landing (STOL) aircraft equipped with a traditional and hybrid propulsion system. This research is part of the contemporary trend of research aimed at reducing the impact of aviation on the natural environment. The analyzed propulsion system consists of turbine engines and electric motors cooperating with them. In this work, on the basis of data from flight tests, the energy requirement for the aircraft to perform the intended mission was determined. On this basis, fuel consumption and the corresponding pollutant emissions were determined for an aircraft with a traditional power unit. For comparison, an aircraft with a hybrid propulsion system with the same mass as an aircraft with a traditional propulsion system was used. Then, energy consumption, fuel consumption and emission of CO2, CO, NOx, VOC, PM10 and PM2.5 were obtained for both aircraft variants. The most important results of the conducted research include a reduction in CO2 emissions by 23% and NOx emissions by 46% in the case of the hybrid propulsion. This indicates potential benefits of using hybrid propulsion in aviation.
Twórcy
  • Department of Ship Operation, Faculty of Navigation, Gdynia Maritime University
  • Department of Aerospace Engineering, Faculty of Mechanical Engineering and Aviation, Rzeszow University of Technology
Bibliografia
  • 1. Bai M.; Yang, W.; Song D.; Kosuda M.; Szab, S.; Lipovsky P.; Kasaei A. Research on energy management of hybrid un-manned aerial vehicles to improve energy-saving and emission reduction performance. Int. J. Environ. Res. Public Health 2020, 17, 2917. https://doi.org/10.3390
  • 2. Brunekreef, B.; Beelen, R.; Hoek, G.; Schouten, L.; Bausch-Goldbohm, S.; Fischer, P.; Armstrong, B.; Hughes, E.; Jerrett, M.; Brandt, P.V.D. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: The NLCS-AIR study. Research report. Health Eff. Inst. 2009, 139, 5–71. https://dspace.library.uu.nl/handle/1874/39242 Available online: URL (accessed on 1st September 2023).
  • 3. Buregeya, J.M.; Apparicio, P.; Gelb, J. Short-term impact of traffic-related particulate matter and noise exposure on cardiac function. Int. J. Environ. Res. Public Health 2020, 17, 1220. https://doi.org/10.3390/ijerph17041220
  • 4. Bidoli, E.; Pappagallo, M.; Birri, S.; Frova, L.; Zanier, L.; Serraino, D. Residential proximity to major roadways and lung cancer mortality. Italy, 1990–2010: An observational study. Int. J. Environ. Res. Public Health 2016, 13, 191. https://doi.org/10.3390/ijerph13020191
  • 5. WHO. Air quality guidelines for Europe, 2nd ed. World Health Organization. Regional Office for Europe. 2000. https://apps.who.int/iris/handle/10665/107335. Available online: URL (accessed on 1st September 2023).
  • 6. WHO. Air Quality Guidelines. Global Update 2005; Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Copenhagen, Denmark, 2006.
  • 7. www.icao.int. Available online: URL (accessed on 1st September 2023).
  • 8. https://ec.europa.eu/transport/sites/default/files/modes/air/doc/flightpath2050.pdf. Available online: URL (accessed on 1st September 2023).
  • 9. Rohacs, J.; Kale, U.; Rohacs, D. Radically new solutions for reducing the energy use by future aircraft and their operations, Energy, Part E, 2022, Volume 239, 122420. https://doi.org/10.1016/j.energy.2021.122420
  • 10. Czarnigowski J., Skiba K., Rękas D., Ścisłowski K., Jakliński P. Bench tests for exhaust gas temperature distribution in an aircraft piston engine with and without a turbocharger. Advances in Science and Technology Research Journal 2021; 15(3): 155-166. doi:10.12913/22998624/139688.
  • 11. Czarnigowski J., Jakliński P., Karpiński P. Effect of ignition advance angle offset in a dual ignition system of a large aircraft piston engine. International Journal of Engine Research. 2023;24(12):4537-4552. doi:10.1177/14680874221103711
  • 12. Czarnigowski J., Jakliński P., Karpiński P. Comparison of dual and single spark ignition in operation of a large piston aircraft engine. International Journal of Engine Research. 2021;22(9):2884-2899. doi:10.1177/1468087420960965
  • 13. Agarwal, R.K. Sustainable (green) aviation: Challenges and opportunities. SAE Int. J. Aerosp. 2009, 2, 1–20. DOI: https://doi.org/10.4271/2009-01-3085
  • 14. Daggett, D.; Hendricks, R.; Walther, R., Alternative Fuels and Their Potential Impact on Aviation. 2006-214365, ICAS-2006-5.8.2, E-15568. http://large.stanford.edu/courses/2012/ph240/kumar2/docs/214365.pdf. Available online: URL (accessed on 1st September 2023).
  • 15. Timmis, A.J.; Hodzic, A.; Koh, L.; Bonner, M.; Soutis, C.; Schäfer, A.W.; Dray, L. Environmental impact assessment of aviation emission reduction through the implementation of composite materials. Int. J. Life Cycle Assess. 2015, 20, 233–243. https://doi.org/10.1007/s11367-014-0824-0
  • 16. Friedrich, C.; Robertson, P.A. Hybrid-electric propulsion for aircraft. J. Aircr. 2014, 52, 176–189. https://doi.org/10.2514/1.C032660
  • 17. Bradley, M.K.; Droney, C.K. Subsonic Ultra Green Aircraft Research; NASA: Hampton, VA, USA, 2011. https://ntrs.nasa.gov/citations/20150017039. Available online: URL (accessed on 1st September 2023).
  • 18. Hughes, C.; Van Zante, D.; Heidmann, J. Aircraft engine technology for green aviation to reduce fuel burn. In: Proceedings of the 3rd AIAA Atmospheric Space Environments Conference, Honolulu, HI, USA, 27–30 June 2011; p. 3531. https://ntrs.nasa.gov/api/citations/20140003870/downloads/20140003870.pdf. Available online: URL (accessed on 1st September 2023).
  • 19. Pawlak, M.; Kuźniar, M. The effects of the use of algae and jatropha biofuels on aircraft engine exhaust emissions in cruise phase. Sustainability 2022, 14, 6488. https://doi.org/10.3390/su14116488
  • 20. Brelje B.J.,Martins J., Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches, Progress in Aerospace Sciences, 2019, Volume 104, Pages 1-19, https://doi.org/10.1016/j.paerosci.2018.06.004
  • 21. Fefermann, Y., et al. Hybrid-electric motive power systems for commuter transport applications. 2016. https://www.semanticscholar.org/paper/hybrid-electric-motive-power-systems-for-commuter-Fe-fermann-Maury/fc2b3e154cf9f87b42667f6763d-b9ea59d9f33d6. Available online: URL (accessed on 1st September 2023).
  • 22. Fillippone A. Fixed and rotary wing aircraft. But-teeorth-Heinemann 2006, USA.
  • 23. Flinger, D., Braun, C., Bil, C. A review of configuration design for distributed propulsion transitioning VTOL aircraft. Proceedings of the 2017 Asia-Pacific International Symposium on Aerospace Technology, 2017, 1782–1796. http://www.apisat2017.org (accessed on 1st September 2023).
  • 24. Flinger F. D., Braun C. Case studies in initial sizing for hybrid-electric general aviation aircraft. AIAA/IEEE Electric Aircraft Technologies Symposium, 2018, https://doi.org/10.2514/6.2018-5005
  • 25. Flinger F. D., Braun C. Impact of engine failure constraints on the initial sizing of hybrid-electric GA aircraft. Conference: AIAA Scitech 2019 Forum, San Diego. https://doi.org/10.2514/6.2019-1812
  • 26. Finger, F., D., Braun, C., Bil, C. Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs. CEAS Aeronaut J, 2019, 10, 827–843 https://doi.org/10.1007/s13272-018-0352-x
  • 27. Xie, Y.; Savvarisal, A.; Tsourdos, A.; Zhang, D.; Gu, J. Review of hybrid electric powered aircraft, its conceptual design and energy management methodologies, Chinese Journal of Aeronautics, 2021, 34(4), 432-450. https://doi.org/10.1016/j.cja.2020.07.017.
  • 28. Zhu, Y.; Zhu, B.; Yang, X.; Hou, Z.; Zong, J. Fuzzy Logic-based energy management strategy of hybrid electric propulsion system for fixed-wing VTOL aircraft. Aerospace 2022, 9, 547. https://doi.org/10.3390/aerospace9100547
  • 29. Lei, T.; Wang, Y.; Jin, X.; Min, Z.; Zhang, X.; Zhang, X. An optimal fuzzy logic-based energy management strategy for a fuel cell/battery hybrid power unmanned aerial vehicle. Aerospace 2022, 9, 115. https://doi.org/10.3390/aerospace9020115
  • 30. Lei, T.; Min, Z.; Gao, Q.; Song, L.; Zhang, X.; Zhang, X. The architecture optimization and energy management technology of aircraft power systems: A review and future trends. Energies 2022, 15, 4109. https://doi.org/10.3390/en15114109
  • 31. Zhang, J.; Roumeliotis, I.; Zolotas, A. Sustainable aviation electrification: A comprehensive review of electric propulsion system architectures, energy management, and control. Sustainability 2022, 14, 5880. https://doi.org/10.3390/su14105880
  • 32. ICAO Aircraft Engine Emission Databank – approved emissions levels - www.easa.europa.eu
  • 33. Tolga E. Estimation of engine emissions from commercial aircraft at a midsized Turkish Airport, Journal of Environmental Engineering. ASCE; 2008. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:3(210)
  • 34. Serafino G. Inter-dependencies between emissions of CO2, NOx & noise from aviation - multi-objective trajectory optimization to reduce aircraft emissions in case of unforeseen weather events, 29th Congress of the International Council of the Aeronautical Sciences; 2014.
  • 35. ICAO, Airport Air Quality Manual, Doc. No.9889, First Edition, 2011 - https://www.icao.int/environmental-protection/Documents/Publications/FINAL.Doc%209889.Corrigendum.en.pdf Available online: URL (accessed on 1st September 2023).
  • 36. EASA, EEA, EUROCONTROL, European Aviation Environmental Report, 2016 - https://www.uecna.eu/wp-content/uploads/2016/02/european-aviation-environmental-report-2016.pdf Available online: URL (accessed on 1st September 2023).
  • 37. ICAO, International Standards and Recommended Practices. Annex 16 to the Convention on International Civil Aviation, Environmental Protection, Volume II: Aircraft Engine Emissions. Third Edition, July 2008 - https://www.iacm.gov.mz/app/uploads/2018/12/an_16_V2_Aircraft-engine-emissions_3ed._2008_rev.8_01.01.15.pdf Available online: URL (accessed on 1st September 2023).
  • 38. PZL M28 Technical Data, available at https://pzlmielec.pl/oferta/m28b-bryza/dane-techniczne Available online: URL (accessed on 1st September 2023).
  • 39. PZL, M28 Aircraft Flight Manual, introduced into use by order of the Commander of Air Forces and Air Defense, No. 4 of January 18, 2002, Ref. No. PBD-1/ 8 /2000/ album 31, Mielec, Poland 2001.
  • 40. Aircraft Performance Database - https://contentzone.eurocontrol.int/aircraftperformance/details.aspx?ICAO=AN28&NameFilter=PZL Available online: URL (accessed on 1st September 2023).
  • 41. European Union Aviation Safety Agency, TE.CERT.00052-001. Issue: 02. Type-Certificate Data Sheet No. EASA IM.E.078 for PT6A-41 Series Engines. Type Certificate Holder: Pratt and Whitney Canada Corp. 1000 Marie Victorin Longueuil, Québec, J4G 1A1, Canada. 17 March 2022.
  • 42. https://www.electrive.com/2022/02/17/amprius-delivers-450-wh-kg-battery-cells/ Available online: URL (accessed on 1st September 2023).
  • 43. The EMRAX 268 Manual, available at https://emrax.com/e-motors/emrax-268/ Available online: URL (accessed on 1st September 2023).
  • 44. energy.cleartheair.org.hk/wp-content/uploads/2016/11/24612.pdf Available online: URL (accessed on 1st September 2023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3816b06e-78ae-410d-a57f-cd004942b95f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.