Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Identification of mechanical properties of isotropic and anisotropic materials that demonstrate non-linear elastic behavior, such as rubbers and soft tissues of human body, is critical for many industrial and medical purposes. In this paper, a method is presented to obtain the mechanical constants of Mooney-Rivlin and Holzapfel hyper-elastic material models which are employed to describe the behavior of isotropic and anisotropic hyper-elastic materials, respectively. By using boundary measured data from a sample with non-standard geometry, and by using an iterative inverse analysis technique, the material constants are obtained. The method uses the results of different experiments simultaneously to obtain the material parameters more accurately. The effectiveness of the proposed method is demonstrated through three examples. In the two first examples, the simulated measured data are used, while in the third example, the experimental data obtained from a polyvinyl alcohol sample are used.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
895—910
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Shiraz University, Department of Mechanical Engineering, Shiraz, Iran
autor
- Shiraz University, Department of Mechanical Engineering, Shiraz, Iran
Bibliografia
- 1. Abyaneh M.H., Wildman R.D., Ashcroft I.A., Ruiz P.D., 2013, A hybrid approach to determining cornea mechanical properties in-vivo using a combination of nano-indentation and inverse finite element analysis, Journal of the Mechanical Behavior of Biomedical Materials, 27, 239-248
- 2. Ahn B., Kim Y., Kim J., 2008, Biomechanical characterization with inverse FE model parameter estimation: Macro and Micro applications, International Conference on Control, Automation and Systems, 1769-1772
- 3. Baker M., Shrot A., 2013, Inverse parameter identification with finite element simulation using knowledge-based descriptors, Computational Materials Science, 69, 128-136
- 4. Balaraman K., Mukherjee S., Chawla A., Malhotra R., 2005, Inverse finite element characterization of soft tissue using impact experiments and Taguchi method, SAE Internationals, 2005-01-4044
- 5. Czabanowski R., 2010, Experimental identification of hyperelastic material parameters for calculations by the finite element method, Journal of KONES, 17, 1, 87-92
- 6. Fung Y.C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer, New York
- 7. Gasser T.C., Ogden R.W., Holzapfel G.A., 2006, Hyperelastic modeling of arterial layers with distributed collagen fiber orientations, Journal of Royal Society Interface, 3, 6, 15-35
- 8. Hartman S., 2001, Numerical studies on the identification of the material parameters of Rivlin’s hyper-elasticity using tension-torsion tests, Acta Mechanica, 148, 129-155
- 9. Hebden J.C., Price B.D., Gibson A.P., Royle G., 2006, A soft deformable tissue equivalent phantom for diffuse optical tomography, Physics in Medicine and Biology, 51, 21, 5581-5590
- 10. Hematiyan M.R., Khosravifard A., Siah Y.C., Tan C.L., 2012, Identification of material parameters of two-dimensional anisotropic bodies using an inverse multi loading boundary element technique, Computer Modeling in Engineering and Science, 87, 1, 55-76
- 11. Holzapfel G.A., Gasser T.C., 2000, A new constitutive framework for arterial wall mechanics and a comparative study of material models, Journal of Elasticity, 61, 1-48
- 12. Holzapfel G.A., 2000, Nonlinear Solid Mechanics, Technical University Graz, Austria
- 13. Holzapfel G.A., Ogden R.W., 2010, Constitutive modeling of arteries, Journal of Royal Society, 466, 2118, 1551-1597
- 14. Hu T., Desai J.P., 2004, Characterization of Soft-Tissue Material Properties: Large Deformation Analysis, Drexel University, Philadelphia
- 15. Krouskop T.A., Wheeler T.M., Kallel F., Garra B.S. Hall T., 1998, Elastic moduli of breast and prostate tissues under compression, Ultrasonic Imaging, 20, 260-274
- 16. Liu G.R., Han X., 2003, Computational Inverse Techniques in Nondestructive Evaluation, CRC Press, Boca Raton, London, New York, Washington, D.C.
- 17. Miller K., Chinzei K., 1997, Constitutive modeling of brain tissue: experiment and theory, Journal of Biomechanics, 30, 1115-1121
- 18. Mehrabian H., 2008, Soft tissue hyper-elastic parameter reconstruction for breast cancer assessment, Mastered Engineering Science Thesis, University of Toronto
- 19. Mesa-Múnera E., Ramĺrez-Salazar J.F., Boulanger P., Branch J.W., 2012, Inverse-FEM characterization of a brain tissue phantom to simulate compression and indentation, Ingenieria y Cienc, 8, 11-36
- 20. Moulton M.J., Creswell L.L., Actis R.L., Myers K.W., Vannier M.W., Szabo B.A., Pasque M.K., 1995, An inverse approach to determining myocardial material properties, Journal of Biomechanics, 28, 8, 935-948
- 21. Ogden R.W., Saccomandi G., Sgura I., 2004, Fitting hyper-elastic models to experimental data, Computational Mechanics, 34, 6, 484-502 22. Pamidi M.R., Advani S.H., 1978, Nonlinear constitutive relations for human brain tissue, Journal of Biomechanical Engineering, 100, 1, 44-48
- 23. Rauchs G., Bardon J., Georges D., 2010, Identification of the material parameters of a viscous hyper-elastic constitutive law from spherical indentation tests of rubber and validation by tensile tests, Mechanic of Materials, 42, 961-973
- 24. Rivlin R.S., Saunder D.W., 1951, Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber, Journal of Royal Society, 243, 865, 251-288
- 25. Schriefl A.J., Reinisch A.J., Sankaran S., Pierce D.M., Holzapfel G.A., 2012, Quantitative assessment of collagen fibre orientations from two-dimensional images of soft biological tissues, Journal of Royal Society, 9, 76, 3081-3093
- 26. Unnikrishnan V.U., Unnikrishnan G.U., Reddy J.N., 2012, Biomechanics of breast tumor: effect of collagen and tissue density, International Journal of Mechanics and Materials in Design, 8, 3, 257-267
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-380f0222-a384-4069-8ec7-ce75a4df7de3