PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Are Baseline Glucocorticoid Levels Linked to Aggressive Behaviour in Wild Wood Mice?

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Defensive strategies of prey species constitute a key element to survive and maximise biological fitness in natural environments. However, some of the mechanisms underlaying antipredator behaviours are not clear. Despite previous studies had attempted to unravel the relationship between aggressiveness and glucocorticoids (GC), this association remains uncertain. Our study aimed to find an explicit link between the aggressive behaviour in the wood mice (Apodemus sylvaticus) and the GC release. For this, a live-trapping study was conducted in the Montes do Invernadeiro Natural Park (NW Spain). We collected faecal samples from 76 captures to measured free-ranging mice baseline faecal corticosterone metabolites (FCM) levels using an enzyme immunoassay. Moreover, we determined the aggressive behaviour of each mice by measuring the number of bites perpetrated upon the researcher while handling. Results of the statistical model showed that aggressive behaviour in mice was not explained by FCM concentrations. On the other hand, a better body condition was associated with the individual's aggressiveness. Moreover, it seems that recaptured individuals tended to be more aggressive, probably because previous experience with this life-threatening event improved the individual's defensive performance in order to successfully escape again.
Rocznik
Strony
94--99
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
  • Unidad Zoología, Departamento de Biología, Universidad Autónoma de Madrid. C/Darwin 2, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
  • Unidad Zoología, Departamento de Biología, Universidad Autónoma de Madrid. C/Darwin 2, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
autor
  • Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago de Chile, Chile
autor
  • Departamento de Fisiología (Fisiología Animal), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
  • Departamento de Fisiología (Fisiología Animal), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
autor
  • Unidad Zoología, Departamento de Biología, Universidad Autónoma de Madrid. C/Darwin 2, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
  • Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) Universidad Autónoma de Madrid, C. Darwin 2, E-28049 Madrid, Spain
Bibliografia
  • 1. Abrams P. A. 2000 – The evolution of predator-prey interactions: theory and evidence – Annu. Rev. Ecol. Evol. Syst. 31: 79-105.
  • 2. Barja I., Silván G., Illera J. C. 2008 – Relationships between sex and stress hormone levels in feces and marking behavior in a wild population of Iberian wolves (Canis lupus signatus) – J. Chem. Ecol. 34: 697-701.
  • 3. Barja I., Silván G., Rosellini S., Piñeiro A., González-Gil A., Camacho L., Illera J. C. 2007 – Stress physiological responses to tourist pressure in a wild population of European pine marten – J. Steroid Biochem. 104: 136-142.
  • 4. Berger S., Wikelski M., Romero L. M., Kalko E. K. Rödl T. 2007 – Behavioral and physiological adjustments to new predators in an endemic island species, the Galapagos marine iguana – Horm. Behav. 52: 653-663.
  • 5. Blanchard D. C., Griebel G., Blanchard R. J. 2001 – Mouse defensive behaviors: Pharmacological and behavioral assays for anxiety and panic – Neurosci. Biobehav. Rev. 25: 205-218.
  • 6. Bondrup-Nielsen S., Ims R. A. 1990 – Reversed sexual size dimorphism in micro-tines: are females larger than males or are males smaller than females? – Evol. Ecol. 4: 261-272.
  • 7. Bosher B. T., Newton S. H., Fine M. L. 2006 – The spines of the channel catfish, Ictalurus punctatus, as an anti-predator adaptation: an experimental study – Ethology, 112: 188-195.
  • 8. Caro T. 2005 – Antipredator defences in birds and mammals – Chicago, IL: University of Chicago Press.
  • 9. Cavigelli S. A. 1999 – Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta – Animal Behav. 57: 935-944.
  • 10. Creel S., Christianson D., Liley S., Winnie J. A. 2007 – Predation risk affects reproductive physiology and demography of elk – Science, 315 (5814): 960-960.
  • 11. Creel S., Marusha Creel N., Monfort S. L. 1996 – Social stress and dominance – Nature, 379 (6562): 212.
  • 12. Dickman C. R. 1992 – Predation and habitat shift in the house mouse, Mus domesticus – Ecology, 73: 313-322.
  • 13. Ebner K., Wotjak C. T., Landgraf R., Engelmann M. 2005 – Neuroendocrine and behavioral response to social confrontation: residents versus intruders, active versus passive coping styles – Horm. behav. 47: 14-21.
  • 14. Hernández M., Navarro-Castilla Á., Piñeiro A., Barja I. 2018a – Wood mice aggressiveness and flight response to human handling: Effect of individual and environmental factors – Ethology, 124: 559-569.
  • 15. Hernández M. C., Navarro-Castilla Á., Planillo A., Sánchez-González B., Barja I. 2018b – The landscape of fear: Why some free-ranging rodents choose repeated live-trapping over predation risk and how it is associated with the physiological stress response – Behav. Processes, 157: 125-132.
  • 16. Hiadlovská Z., Mikula O., Macholán M., Hamplová P., Bímová B. V., Daniszová K. 2015 – Shaking the myth: body mass, aggression, steroid hormones, and social dominance in wild house mouse – Gen. Comp. Endocrinol. 223:16-26.
  • 17. Honess P. E., Marin C. M. 2006 – Behavioural and physiological aspects of stress and aggression in nonhuman primates – Neurosci. Biobehav. Rev. 30: 390-412.
  • 18. Huber P. J. 1967 – The behavior of maximum likelihood estimates under nonstandard conditions – Proceedings of the Fifth Berkeley Symposium on Mathematical Statistic and Probability, 1: 221-233.
  • 19. Kruk M. R., Halasz J., Meelis W., Haller J. 2004 – Fast positive feedback between the adrenocortical stress response and a brain mechanism involved in aggressive behaviour – Behav. Neurosci. 118 (5): 1062.
  • 20. Lind J., Cresswell W. 2005 – Determining the fitness consequences of antipredation behavior – Behav. Ecol. 16: 945-956.
  • 21. Lingle S., Pellis S. 2002 – Fight or flight? Antipredator behavior and the escalation of coyote encounters with deer – Oecologia, 131: 154-164.
  • 22. Magalhaes S., Janssen A., Montserrat M., Sabelis M. W. 2005 – Prey attack and predators defend: counterattacking prey trigger parental care in predators – Proc. R. Soc. Lond. B Biol. Sci. 272 (1575): 1929-1933.
  • 23. Malo A. F., Godsall B., Prebble C., Grange Z., McCandless S., Taylor A., Coulson T. 2013 – Positive effects of an invasive shrub on aggregation and abundance of a native small rodent – Behav. Ecol. 24: 759-767.
  • 24. McCarty R., Aguilera G., Sabban E. L., Kvetnansky R. (Eds.) 2003 – Stress: neural, endocrine and molecular studies – CRC Press.
  • 25. Moitoza D. J., Phillips D. W. 1979 – Prey defence, predator preference, and non-random diet: the interactions between Pycnopodia helianthoides and two species of sea urchins – Mar. Biol. 53: 299-304.
  • 26. Moore I. T., Hopkins W. A. 2009 – Interactions and trade-offs among physiological determinants of performance and reproductive success – Integr. Comp. Biol. 49: 441-451.
  • 27. Naumenko E. V., Popova N. K., Nikulina E. M., Dygalo N. N., Shishkina G. T., Borodin P. M., Markel A. L. 1989 – Behavior, adrenocortical activity, and brain mono-amines in Norway rats selected for reduced aggressiveness towards man – Pharmacol. Biochem. Behav. 33: 85-91.
  • 28. Navarro-Castilla Á., Barja I. 2014 – Anti-predatory response and food intake in wood mice (Apodemus sylvaticus) under simulated predation risk by resident and novel carnivorous predators – Ethology, 120: 90-98.
  • 29. Navarro-Castilla Á., Barja I. 2018 – Stressful living in lower-quality habitats? Body mass, feeding behaviour and physiological stress levels in wild wood mouse populations – Integr. Zool. 14: 114-126.
  • 30. Oyegbile T. O., Marler C. A. 2006 – Weak winner effect in a less aggressive mammal: correlations with corticosterone but not testosterone – Physiol. Behav. 89: 171-179.
  • 31. Piñeiro A., Barja I., Otero G. P. Silván G., Illera J. C. 2015 – No effects of habitat, prey abundance and competitor carnivore abundance on fecal cortisol metabolite levels in wildcats (Felis silvestris) – Ann. Zool. Fennici, 52): 90-102.
  • 32. Polo-Cavia N., Gómez-Mestre I. 2014 – Learned recognition of introduced predators determines survival of tadpole prey – Funct. Ecol. 28: 432-439.
  • 33. Rosellini S., Osorio E., Ruiz-González A., Piñeiro A., Barja I. 2008 – Monitoring the small-scale distribution of sympatric European pine martens (Martes martes) and stone martens (Martes foina): a multi evidence approach using faecal DNA analysis and camera-traps – Wildlife Res. 35: 434-440.
  • 34. Salo P., Banks P. B., Dickman C. R., Korpimäki E. 2010 – Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey – Ecol. Monogr. 80: 531-546.
  • 35. Sánchez-González B., Barja I., Piñeiro A., Hernández-González M. C., Silván G., Illera J. C., Latorre R. 2018 – Support vector machines for explaining physiological stress response in Wood mice (Apodemus sylvaticus) – Sci. Rep. 8 (1): 2562.
  • 36. Sapolsky R. M. 1982 – The endocrine stress-response and social status in the wild baboon – Horm. Behav. 16: 279-292.
  • 37. Sgoifo A., De Boer S. F., Haller J., Koolhaas J. M. 1996 – Individual differences in plasma catecholamine and corticosterone stress responses of wild-type rats: relationship with aggression – Physiol. Behav. 60: 1403-1407.
  • 38. Stamp J. A., Mashoodh R., van Kampen J. M., Robertson H. A. 2008 – Food restriction enhances peak corticosterone levels, cocaine-induced locomotor activity, and ΔFosB expression in the nucleus accumbens of the rat – Brain Res. 1204: 94-101.
  • 39. Summers C. H., Winberg, S. 2006 – Interactions between the neural regulation of stress and aggression – J. Exp. Biol. 209 (23): 4581-4589.
  • 40. Van Erp A. M., Miczek K. A. 2000 – Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats – J. Neurosci. 20 (24): 9320-9325.
  • 41. Wesołowski T. 2002 – Anti-predator adaptations in nesting Marsh Tits Parus palustris: the role of nest-site security – Ibis, 144: 593-601.
  • 42. White H. 1980 – A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity – Econometrica, 48, 817-838.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38083319-ccf3-4ff5-bbd4-f031c4458d72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.