PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Leaching behaviour of zinc from a smithsonite ore in sodium hydroxide solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the leaching behaviour of zinc from a smithsonite ore sample (23.43% Zn) having goethite and calcite as main gangue minerals was investigated in sodium hydroxide solutions using Xray diffraction and chemical analyses. Within the studied NaOH concentration range (1-4 mole/dm3), higher leaching ratio values for Zn were obtained by leaching at 298 K because of the decreased stability of soluble zincate species in solution at higher temperatures. When the concentration of NaOH solution was increased from 1 to 3 mole/dm3 at 298 K, leaching ratio value of Zn increased from 3.8 to 70.1%. At 4 mole/dm3 NaOH concentration, Zn leaching ratio value (70.9%) levelled off due to the formation of solid hydrated calcium zincate phase in leaching solution. On the other hand, very low leaching ratio values of Zn were obtained by leaching in 1 mole/dm3 NaOH solution at 298 K (3.8%) and 363 K (1.4%) due to the formation of solid zinc hydroxide and solid zinc oxide phases, respectively. It was observed that increasing leaching time from 1800 to 14400 s at 3 mole/dm3 NaOH concentration, favoured the formation of hydrated calcium zincate phase and so decreased the leaching ratio of Zn to a lower value (60.6%). The effect of solid/liquid ratio was also investigated and it was found that when solid/liquid ratio was decreased, Zn leaching ratio values decreased at constant OH/Zn mole ratio and increased at constant NaOH concentration conditions. Besides, for some of the experiments, leaching ratio values of lead were also given.
Rocznik
Strony
407--416
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • Hacettepe University, Mining Engineering Department, 06800 Beytepe, Ankara, Turkey
  • ilhan.ehsani@hacettepe.edu.tr
  • Hacettepe University, Mining Engineering Department, 06800 Beytepe, Ankara, Turkey
  • Hacettepe University, Mining Engineering Department, 06800 Beytepe, Ankara, Turkey
Bibliografia
  • ABALI, Y., BAYCA, S.U., GUMUS, R., 2017. Dissolution kinetics of smithsonite in boric acid solutions. Physicochem. Probl. Miner. Process. 53, 161-172.
  • ABKHOSHK, E., JORJANI, E., AL-HARAHSHEH, M.S., RASHCHI, F., NAAZERI, M., 2014. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 149, 153-167.
  • ADBEL-AAL, E.A., RASHAD, M.M., EL-SHAZLY, A.N., IBRAHIM, I.A., EL-SHAHAT, M.F., 2016, Hydrometallurgical treatment of non-sulfide zinc ore for precipitation of zinc oxide nanoparticles. Physicochem. Probl. Miner. Process. 52, 729-737.
  • BAROCH, C.T., HILLIARD, R.V., LANG, R.S., 1953. The caustic electrolytic-zinc process. J. Electrochem. Soc. 100, 165-172.
  • BROWN, A.P., MEISENHELDER, J.H., YAO, N.-P., 1983. The alkaline electrolytic process for zinc production: A critica evaluation. Ind. Eng. Chem. Prod. R.D. 22, 263-272.
  • DEBIEMME-CHOUVY, C., VEDEL, J., 1991. Supersaturated zincate solutions: A study of the decomposition kinetics. J. Electrochem. Soc. 138, 2538-2542.
  • DENG, J., SUN, Q., LIN, P., SONG, G., WEN, S., DENG, J., WU, D., 2015. Dissolution kinetics of zinc oxide ore with an organic acid. Int. J. Metall. Mater. Eng. 1, 109, 7 pages.
  • DHAWAN, N., SAFARZADEH, M.S., BIRINCI, M., 2011. Kinetics of hydrochloric acid leaching of smithsonite. Russ. J. Non-Ferr. Met+ 52, 209-216.
  • DOU, A., YANG, T., YANG, J., WU, J., WANG, A., 2011. Leaching of low grade zinc oxide ores in Ida2--H2O system. T. Nonferr. Metal. Soc. 21, 2548-2553.
  • DPT, 2001. State Planning Organization, Eighth Five-year Development Plan, Mining Specialization Commission Report, Subcommittee of Metal Mines, Lead-Zinc-Cadmium Study Group Report. DPT:2628, OIK:639, Ankara, pp. 85-167 (in Turkish).
  • EJTEMAEI, M., GHARABAGHI, M., IRANNAJAD, M., 2014. A review of zinc oxide mineral beneficiation using flotation method. Adv. Colloid Interfac. 206, 68-78.
  • ESPIARI, S., RASHCHI, F., SADRNEZHAAD, S.K., 2006. Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy 82, 54-62.
  • FENG, L., YANG, X., SHEN, Q., XU, M., JIN, B., 2007. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores. Hydrometallurgy 89, 305-310.
  • FENG, Q., WEN, S., ZHAO, W., BAI, X., CHEN, Y., 2015. Dissolution regularities of smithsonite in methane sulfonic acid. Russ. J. Non-Ferr. Met+ 56, 365-371.
  • FRENAY, J., 1985. Leaching of oxidized zinc ores in various media. Hydrometallurgy 15, 243-253.
  • GAGNON, E.G., 1986. Effects of KOH concentration on the shape change and cycle life of Zn/NiOOH cells. J. Electrochem. Soc. 133, 1989-1995.
  • GAWLICKI, M., CZAMARSKA, D., 1992. Effect of ZnO on the hydration of portland cement. J. Therm. Anal. 38, 2157-2161.
  • GHASEMI, S.M.S., AZIZI, A., 2017, Investigation of leaching kinetics of zinc from a low-grade ore in organic and inorganic acids. J. Min. Environ. 8, 579-591.
  • GHASEMI, S.M.S., AZIZI, A., 2018, Alkaline leaching of lead and zinc by sodium hydroxide: kinetics modeling. J. Mater. Res. Technol. 7, 118-125.
  • GIANNAKOUDAKIS, D.A., ARCIBAR-OROZCO, J.A., BANDOSZ, T.J., 2015. Key role of terminal hydroxyl groups and visible light in the reactive adsorption/catalytic conversion of mustard gas surrogate on zinc (hydr)oxides. Appl. Catal. B-Environ. 174&175, 96-104.
  • GRAF, G.G., 2005. Zinc. Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, pp. 1-23.
  • HANILCI, N., OZTURK, H., 2011. Geochemical/isotopic evolution of Pb-Zn deposits in the Central and Eastern Taurides, Turkey. Int. Geol. Rev. 53, 1478-1507.
  • HAO, J., YANG, C., ZHAO, F., 2014. A facile route for the preparation of calcium zincate and its application in Ni-Zn batteries. J. Electrochem. Soc. 161, A704-A707.
  • HITZMAN, M.W., REYNOLDS, N.A., SANGSTER, D.F., ALLEN, C.R., CARMAN, C.E., 2003. Classification, genesis, and exploration guides for nonsulfide zinc deposits. Econ. Geol. 98, 685-714.
  • HOSSEINI, S.H., FORSSBERG, E., 2009. Smithsonite flotation using mixed anionic/cationic collector. T. I. Min. Metall. C 118, 186-190.
  • HURSIT, M., LACIN, O., SARAC, H., 2009. Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent. J. Taiwan Inst. Chem. E. 40, 6-12.
  • ILZSG, 2017. International Lead & Zinc Study Group. http://www.ilzsg.org/static/enduses.aspx?from=1, accessed 27/09/2017.
  • IRANNAJAD, M., MESHKINI, M., AZADMEHR, A.R., 2013. Leaching of zinc from low grade oxide ore using organic acid. Physicochem. Probl. Miner. Process. 49, 547-555.
  • JU, S., MOTANG, T., SHENGHAI, Y., YINGNIAN, L., 2005. Dissolution kinetics of smithsonite ore in ammonium chloride solution. Hydrometallurgy 80, 67-74.
  • LI, P., LIU, H., ZHANG, Y., WEI, Y., WANG, X., 2007. Synthesis of flower-like ZnO microstructures via a simple solution route. Mater. Chem. Phys. 106, 63-69.
  • LI, P., LIU, H., LU, B., WEI, Y., 2010. Formation mechanism of 1D ZnO nanowhiskers in aqueous solution. J. Phys. Chem. C 114, 21132-21137.
  • LIEBAU, F., AMEL-ZADEH, A., 1972. The crystal structure of Ca[Zn2(OH)6]·2H2O - a retarder in the setting of Portland cement. Krist. Tech. 7, 221-227.
  • LIU, Q., ZHAO, Y., ZHAO, G., 2011. Production of zinc and lead concentrates from lean oxidized zinc ores by alkaline leaching followed by two-step precipitation using sulfides. Hydrometallurgy 110, 79-84.
  • MCBRIDE, R.A., KELLY, J.M., MCCORMACK, D.E., 2003. Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. J. Mater. Chem. 13, 1196-1201.
  • MOEZZI, A., CORTIE, M., MCDONAGH, A., 2011. Aqueous pathways for the formation of zinc oxide nanoparticles. Dalton T. 40, 4871-4878.
  • MOGHADDAM, J., SARRAF-MAMOORY, R., YAMINI, Y., ABDOLLAHY, M., 2005. Determination of the optimum conditions for the leaching of nonsulfide zinc ores (high-SiO2) in ammonium carbonate media. Ind. Eng. Chem. Res. 44, 8952-8958.
  • MUJAHED, S.B., 1966. Electrowinning in Alkaline Medium - Electrolytic Production of Lead and Zinc from an Oxidized Ore from Develi (Kayseri) via Caustic Leaching. MSc Thesis, Middle East Technical University.
  • MUKHOPADHYAY, S., DAS, P.P., MAITY, S., GHOSH, P., DEVI, P.S., 2015. Solution grown ZnO rods: Synthesis, characterization and defect mediated photocatalytic activity. Appl. Catal. B-Environ. 165, 128-138.
  • NICHOLAS, N.J., FRANKS, G.V., DUCKER, W.A., 2012. The mechanism for hydrothermal growth of zinc oxide. CrystEngComm 14, 1232-1240.
  • PRASAD, P.S.R., PRASAD, K.S., CHAITANYA, V.K., BABU, E.V.S.S.K., SREEDHAR, B., MURTHY, S.R., 2006. In situ FTIR study on the dehydration of natural goethite. J. Asian Earth Sci. 27, 503-511.
  • QIN, W., LI, W., LAN, Z., QIU, G., 2007. Simulated small-scale pilot plant heap leaching of low-grade oxide zinc ore with integrated selective extraction of zinc. Miner. Eng. 20, 694-700.
  • RAO, S., YANG, T., ZHANG, D., LIU, W., CHEN, L., HAO, Z., XIAO, Q., WEN, J., 2015. Leaching of low grade zinc oxide ores in NH4Cl-NH3 solutions with nitrilotriacetic acid as complexing agents. Hydrometallurgy 158, 101-106.
  • SANTORO, L., BONI, M., HERRINGTON, R., CLEGG, A., 2013. The Hakkari nonsulfide Zn-Pb deposit in the context of other nonsulfide Zn-Pb deposits in the Tethyan Metallogenic Belt of Turkey. Ore Geol. Rev. 53, 244-260.
  • SMYKATZ-KLOSS, W., HEIDE, K., KLINKE, W., 2003. Applications of thermal methods in the geosciences. Handbook of Thermal Analysis and Calorimetry, Vol. 2, pp. 451-593.
  • ST-PIERRE, J. PIRON, D.L., 1986. Electrowinning of zinc from alkaline solutions. J. Appl. Electrochem. 16, 447-456.
  • TOP, A., CETINKAYA, H., 2015. Zinc oxide and zinc hydroxide formation via aqueous precipitation: Effect of the preparation route and lysozyme addition. Mater. Chem. Phys. 167, 77-87.
  • UEKAWA, N., YAMASHITA, R., WU, Y.J., KAKEGAWA, K., 2004. Effect of alkali metal hydroxide on formation processes of zinc oxide crystallites from aqueous solutions containing Zn(OH)42- ions. Phys. Chem. Chem. Phys. 6, 442-446.
  • USUI, H., 2009. Surfactant concentration dependence of structure and photocatalytic properties of zinc oxide rods prepared using chemical synthesis in aqueous solutions. J. Colloid Interf. Sci. 336, 667-674.
  • WANG, Y.-M., 1990. Effect of KOH concentration on the formation and decomposition kinetics of calcium zincate. J. Electrochem. Soc. 137, 2800-2803.
  • WANG, S., YANG, Z., ZENG, L., 2008. Study of calcium zincate synthesized by solid-phase synthesis method without strong alkali. Mater. Chem. Phys. 112, 603-606.
  • WANG, M., ZHOU, Y., ZHANG, Y., HAHN, S.H., KIM, E.J., 2011. From Zn(OH)2 to ZnO: a study on the mechanism of phase transformation. CrystEngComm 13, 6024-6026.
  • WEIR, C.E., LIPPINCOTT, E.R., 1961. Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. J. Res. N.B.S. A Phys. Ch. 65, 173-183.
  • WU, D., WEN, S., YANG, J., DENG, J., JIANG, L., 2013. Dissolution kinetics of smithsonite in sulfamic acid solution. Asian J. Chem. 25, 10556-10560.
  • WU, D.D., WEN, S.M., YANG, J., DENG, J.S., 2015. Investigation of dissolution kinetics of zinc from smithsonite in 5-sulphosalicylic acid solution. Can. Metall. Quart. 54, 51-57.
  • XIA, Z.M., TANG, M.T., YANG, S.H., 2015. Materials balance of pilot-scale circulation leaching of low-grade zinc oxide ore to produce cathode zinc. Can. Metall. Quart. 54, 439-445.
  • ZHANG, Y., DENG, J., CHEN, J., YU, R., XING, X., 2013. Leaching of zinc from calcined smithsonite using sodium hydroxide. Hydrometallurgy 131&132, 89-92.
  • ZHANG, Y., HUA, Y., GAO, X., XU, C., LI, J., LI, Y., ZHANG, Q., XIONG, L., SU, Z., WANG, M., RU, J., 2016. Recovery of zinc from a low-grade zinc oxide ore with high silicon by sulfuric acid curing and water leaching. Hydrometallurgy 166, 16-21.
  • ZHAO, Y., STANFORTH, R., 2000. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores. Hydrometallurgy 56, 237-249.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-380718ba-ea49-4a91-9b64-8141f8b782d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.