PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis in Commutation of a New High Voltage Thyristor Structure for High Temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a high voltage thyristor structure using Schottky contacts on the anode side is analysed through 2D physical simulations in terms of switching performance. The replacement of the P emitter of a conventional symmetrical thyristor by a judicious association of P diffusions and Schottky contacts at the anode side contributes to the reduction of the leakage current in the forward direction and hence improves the forward blocking voltage at high temperature while maintaining its reverse blocking capability. It is shown by comparing this structure with a conventional thyristor, that the presence of Schottky contact does not degrade the turn-on process. It is also shown that the presence of Schottky contact reduces the device turn-off time, improving the maximum operating frequency of the device.
Twórcy
autor
  • CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
  • Université de Toulouse, LAAS, F-31400 Toulouse, France
autor
  • CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
  • Université de Toulouse, UPS, LAAS, F-31400 Toulouse, France
autor
  • CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
  • Université de Toulouse, UPS, LAAS, F-31400 Toulouse, France
Bibliografia
  • [1] H. Peter Lips, “Technology Trends for HVDC thyristor Valves”, POWERCON, 1998, pp 451-455.
  • [2] E. Spahn, G. Buderer, J. Wey, V. Wegner, F. Jamet, “The use of Thyristors as Main Switches in EML Applications”, IEEE Trans. On Magnetics, Vol. 29 (1), 1993, pp 1060-1065.
  • [3] S. Scharnholz, V. Brommer, V. Zorngiebel, A. Welleman, E. Spahn, “Performance study of a novel 13.5 kV multichip thyristor switch”, PPC’09. 2009, pp 679-682.
  • [4] T. Nakagawa, K. Satoh, M. Yamamoto, K. Hirasawa, K. Ohta, “8kV/3.6kA Light Triggered Thyristor”, ISPSD’95, 1995, pp 175-180.
  • [5] R. A. Kokosa, B. R. Tuft, “A High-Voltage, High-Temperature Reverse Conducting Thyristor”, IEEE Trans. Electron Devices, Vol. 17 (9), 1970, pp 667-672.
  • [6] Q. Zhang et al. “SiC super GTO thyristor for technology development: Present status and future perspective”, PPC’11, 2011, pp 1530-1535.
  • [7] V. V. N. Obreja, C. Codreanu, C. Podaru, K. I. Nuttall, O. Buiu, “The Operation Temperature of Silicon Power Thyristors and the Blocking Leakage Current”, IEEE Power Electronics Specialists Conf. 2004, pp 2990-2993.
  • [8] V. V. N. Obreja, K. I. Nuttall, “On the High Temperature Operation of High Voltage Power Devices”, ESSDERC 2002, pp 1-4.
  • [9] G. Toulon, A. Bourennane, K. Isoird, “Impact of a backside Schottky contact on the thyristor characteristics at high temperature”, ISPS, 2012, pp 131-136
  • [10] J. Baliga, “The Pinch Rectifier : A Low-Forward-Drop High-Speed Power Diode”, IEEE Electron Device Letters, Vol. 5 (6), 1984, pp 194-196.
  • [11] Y. Yamasaki, “Experimental Observation of the Lateral Plasma Propagation in a Thyristor”, IEEE Transactions on Electron Devices, Vol. ED-22, pp. 65-68, 1975.
  • [12] L. Meysenc, M. Jylhäkallio, P. Barbosa, “Power Electronics Cooling Effectiveness Versus Thermal Inertia”, IEEE Transactions on Power Electronics, Vol. 20, No 3, pp 687-693, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37f5d1e6-8dde-462e-a884-3f00ad1e973b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.