PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of GFRP-RC precast cap beam to column connections with epoxy-anchored reinforcement: a numerical study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam to column connections connected with epoxy-anchored reinforcement (epoxy duct connection). The developed model was initially validated against three experimental results with different anchored GFRP reinforcement considering the effect of reinforcement slippage. Different interaction models for slippage simulation were evaluated and discussed. The validated model was then utilized to investigate the effect of anchored length, bar diameters, anchored reinforcement amount, and the geometry of the connection. The results indicate that an optimum anchored length, equal to 25 times the bar's diameter, should be provided. It was also found that the precast beam-to-column element connection should be designed for a moment capacity at least 25% higher than that of the column section. Moreover, a minimum beam width, depth and beam overhanging length of 1.75, 1.6 and 0.25 times the column width respectively were recommended to be considered in design. The results from this study can provide direct guidelines for the design of precast GFRPRC cap beam to the column connection with epoxy anchored reinforcement, especially in applications where precast elements need to be erected quickly, a novel method that can accelerate the construction of jetties and bridges.
Rocznik
Strony
art. no. e131, 2024
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
  • School of Engineering and Technology, Badr University in Cairo, Cairo 11829, Egypt
  • UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
autor
  • UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
autor
  • UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
autor
  • Faculty of Science and Technology, Charles Darwin University, Darwin, Australia
autor
  • Center for Future Materials, School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
Bibliografia
  • 1. Elliott KS. Precast concrete structures. CRC Press; 2019.
  • 2. Kurama YC, Sritharan S, Fleischman RB, Restrepo JI, Henry RS, Cleland NM, et al. Seismic-resistant precast concrete structures: state of the art. J Struct Eng. 2018;144:03118001.
  • 3. Croce P, Formichi P, Landi F. Influence of reinforcing steel corrosion on life cycle reliability assessment of existing RC buildings. Buildings. 2020;10:99.
  • 4. Sajedi S, Huang Q. Reliability-based life-cycle-cost comparison of different corrosion management strategies. Eng Struct. 2019;186:52-63.
  • 5. Mady M, El-Ragaby A, El-Salakawy E. Seismic behavior of beam-column joints reinforced with GFRP bars and stirrups. J Compos Constr. 2011;15:875-86.
  • 6. Ghomi SK, El-Salakawy E. Effect of joint shear stress on seismic behaviour of interior GFRP-RC beam-column joints. Eng Struct. 2019;191:583-97.
  • 7. ACI CODE-440.11-22: Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars - Code and Commentary. American Concrete Institute 2023.
  • 8. Ngo TT, Pham TM, Hao H, Chen W, San HN. Proposed new dry and hybrid concrete joints with GFRP bolts and GFRP reinforcement under cyclic loading: testing and analysis. J Build Eng. 2022;49: 104033.
  • 9. Hassanli R, Vincent T, Manalo A, Smith ST, Gholampour A, Gravina R. Large-scale experimental study on pocket connections in GFRP-reinforced precast concrete frames. Structures. 2021;34:523-41.
  • 10. Hassanli R, Vincent T, Manalo A, Smith ST, Gholampour A, Gravina R, et al. Connections in GFRP reinforced precast concrete frames. Compos Struct. 2021;276: 114540.
  • 11. Ghanbari-Ghazijahani T, Hassanli R, Manalo A, Smith ST, Vincent T, Gravina R, et al. Cyclic behavior of Beam-column pocket connections in GFRP-reinforced precast concrete assemblages. J Compos Constr. 2023;27:04022107.
  • 12. El-Naqeeb MH, Hassanli R, Zhuge Y, Ma X, Manalo A. Numerical investigation on the behaviour of socket connections in GFRP-reinforced precast concrete. Eng Struct. 2024;303: 117489.
  • 13. El-Naqeeb MH, Ghanbari-Ghazijahani T, Gholampour A, Hassanli R, Zhuge Y, Ma X, et al. Cyclic behaviour of an innovative cap beam to column pocketless connection in GFRP-RC precast structures. Structures. 2024;61: 106003.
  • 14. Saiidi MS, Mehraein M, Shrestha G, Jordan E, Itani A, Tazarv M et al. Proposed AASHTO seismic specifications for ABC column connections, 2020.
  • 15. Tazarv M, Shrestha G, Saiidi MS. State-of-the-art review and design of grouted duct connections for precast bridge columns. Structures. 2021;30:895-909.
  • 16. Wang Z, Qu H, Li T, Wei H, Wang H, Duan H, et al. Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones. Eng Struct. 2018;158:13-27.
  • 17. Hofer L, Zanini MA, Faleschini F, Toska K, Pellegrino C. Seismic behavior of precast reinforced concrete columnto-foundation grouted duct connections. Bull Earthq Eng. 2021;19:5191-218.
  • 18. Wang Z, Wu C, Li T, Xiao W, Wei H, Qu H. Experimental study on the seismic performance of improved grouted corrugated duct connection (GCDC) design for precast concrete bridge column. J Earthq Eng. 2022;26:2469-90.
  • 19. Zhou M, Zhu G, Song J, Zeng H, Lee GC. An emulative cast-in-place monolithic bridge column assembled with precast segments and UHPC materials. Bull Earthq Eng. 2022;20:6991-7014.
  • 20. Madkour H, Maher M, Ali O. Finite element analysis for interior slab-column connections reinforced with GFRP bars using damage plasticity model. J Build Eng. 2022;48: 104013.
  • 21. Gooranorimi O, Suaris W, Nanni A. A model for the bond-slip of a GFRP bar in concrete. Eng Struct. 2017;146:34-42.
  • 22. Gooranorimi O, Claure G, Suaris W, Nanni A. Bond-slip effect in flexural behavior of GFRP RC slabs. Compos Struct. 2018;193:80-6.
  • 23. Rezazadeh M, Carvelli V, Veljkovic A. Modelling bond of GFRP rebar and concrete. Constr Build Mater. 2017;153:102-16.
  • 24. Sun G, Bai X, Sang S, Zeng L, Yin J, Jing D, et al. Numerical simulation of anchorage performance of GFRP bolt and concrete. Buildings. 2023;13:493.
  • 25. Tekle BH, Khennane A, Kayali O. Bond properties of sand-coated GFRP bars with fly ash-based geopolymer concrete. J Compos Constr. 2016;20:04016025.
  • 26. Zhao W, Jiang K, Yang Y. Numerical simulation of bent corner of FRP stirrups with rectangular cross sections. J Struct Eng. 2023;149:04023120.
  • 27. Simulia. Simulia. Providence, Rhode Island. 2020.
  • 28. El-Naqeeb MH, Abdelwahed BS. Nonlinear finite element investigations on different configurations of exterior beam-column connections with different concrete strengths in column and floor. Structures. 2023;50:1809-26.
  • 29. Zhang G, Han Q, Xu K, Song Y, Li J, He W. Numerical analysis and design method of UHPC grouted RC column-footing socket joints. Eng Struct. 2023;281: 115755.
  • 30. Thorenfeldt E. Mechanical properties of high-strength concrete and applications in design. In: Symposium Proceedings, Utilization of High-Strength Concrete, Norway, 1987.
  • 31. Wight JK, MacGregor JG. Reinforced concrete. Pearson Education UK; 2016.
  • 32. Committee C. Building code requirements for structural concrete (ACI 318-19) and commentary. American Concrete Institute; 2019.
  • 33. Aslani F, Jowkarmeimandi R. Stress-strain model for concrete under cyclic loading. Mag Concr Res. 2012;64:673-85.
  • 34. El-Naqeeb MH, El-Metwally SE, Abdelwahed BS. Performance of exterior beam-column connections with innovative bar anchorage schemes: numerical investigation. Structures. 2022;44:534-47.
  • 35. Ibrahim AM, Fahmy MF, Wu Z. 3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading. Compos Struct. 2016;143:33-52.
  • 36. Elchalakani M, Karrech A, Dong M, Ali MM, Yang B. Experiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loading. Structures. 2018;14:273-89.
  • 37. Morelle X, Chevalier J, Bailly C, Pardoen T, Lani F. Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin. Mech Time-Dependent Mater. 2017;21:419-54.
  • 38. Dean G, Crocker L. Comparison of the measured and predicted deformation of an adhesively bonded lap-joint specimen. 2000.
  • 39. Otoom OF, Lokuge W, Karunasena W, Manalo AC, Ozbakkaloglu T, Thambiratnam D. Experimental and numerical evaluation of the compression behaviour of GFRP-wrapped infill materials. Case Stud Constr Mater. 2021;15: e00654.
  • 40. de Freitas AM, Menon NV, Krahl PA. Numerical and experimental study of the interaction between stirrups and shear strengthening with CFRP in RC beams. Eng Struct. 2023;278: 115514.
  • 41. Eligehausen R, Popov EP, Bertero VV. Local bond stress-slip relationships of deformed bars under generalized excitations. 1982.
  • 42. Caro M, Jemaa Y, Dirar S, Quinn A. Bond performance of deep embedment FRP bars epoxy-bonded into concrete. Eng Struct. 2017;147:448-57.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37ea4462-e3de-4b98-9c15-fa6dcdac9be9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.