PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Worst Case for the Ballistic Test of the Soft Armour System Using the 9mm FMJ Bullets Differing in the Structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ballistic tests require significant rigor and the development of a worst case model during the research processes. The purpose of this study was to evaluate the effect of bullet type (manufacturer) on V50 and Behind Armor Blunt Trauma (BABT) results for two ballistic applications: p-aramid and UHMWPE fibre. The results confirmed the thesis that the source of the bullets implies the test results obtained in terms of the number of penetrated layers in the ballistic system, backface signature deformation profiles (p-BFS) and the level of residual energy transferred to the user of the personal protection.
Rocznik
Strony
63--72
Opis fizyczny
Bibliogr. 18, rys., tab.
Twórcy
  • Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., Lodz 90-505, Poland
  • Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., Lodz 90-505, Poland
  • Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., Lodz 90-505, Poland
  • Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., Lodz 90-505, Poland
Bibliografia
  • 1. Carroll A.W.; Soderstrom C.A., A new nonpenetrating ballistic injury, Ann. Surg., Vol. 188 (6), 1978, p. 753–757.
  • 2. Arborelius U. P.; Rocksén D., Gustavsson J.; Günther M., Pulmonary hypoxia and venous admixture correlate linearly to the kinetic energy from porcine high velocity projectile behind armor blunt trauma, Experimental Lung Research, Vol. 47 (7), 2021, p. 323-333.
  • 3. Yoon G. H.; Mo J. S.; Kim K. H.; Yoon Ch. H., Investigation of bullet penetration in ballistic gelatin via finite element simulation and experiment, Journal of Mechanical Science and Technology, Vol. 29 (9), 2015, p. 3747-3759.
  • 4. Gilson L.; Rabet L.; Imad A.; Coghe F., Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine, International Journal of Impact Engineering, Vol. 136, 2020.
  • 5. Shen W.; Niu Y.; Mattrey R.F. et al. Development and validation of subject- specific finite element models for blunt trauma study, J. Biomech. Eng., Vol. 130 (2), 2008.
  • 6. Jennings R.M.; Malbon C.; Brock F.; Harrisson S.; Carr D.J., A preliminary study into injuries due to non-perforating ballistic impacts into soft body armour over the spine, Injury, Vol. 49 (7), 2018, p. 1251–1257.
  • 7. Gotts P.L., Personal armour testing versus small arms ammunition when the test standard doesn’t fit, Problems of Mechatronics Armament, Aviation, Safety Engineering, ISSN 2081-5891, Vol. 4 (22), 2015, p. 19-30.
  • 8. Ruiguo Han; Yongjie Qu; Wen-min Yan; Bin Qin; Shu Wang; Jian-Zhong Wang, Experimental study of transient pressure wave in the behind armor blunt trauma induced by different rifle bullets, Defence Technology, Vol. 16, 2020, p. 900-909.
  • 9. Shaomin Luo; Cheng Xu; Aijun Chen; Xiaoyun Zhang, Experimental investigation of the response of gelatine behind the soft body armor, Forensic Science International, Vol. 266, 2016, p. 8–13.
  • 10. Shaomin Luoa; Yaoke Wen; Juan Li, Experimental investigation on the characteristics of temporary cavity in BABT with 9 mm projectiles, Forensic Science International, Vol. 323, 2021.
  • 11. Struszczyk M.H.; Łandwijt M.; Wilbik-Hałgas B. et al., Estimation of the propagation of the impact wave phenomenon as a result of a bullet impact in PACVD-modified textiles, Fibres & Textiles in Eastern Europe, 27, 2 (134), 2019, p. 68-73.
  • 12. Kumar J.; Landheer D.; Barnes-Warden J.; Fenne P.; Attridge A.; Williams M.A., Inconsistency in 9 mm bullets measured with non-destructive X-ray computer tomography, Forensic Sci. Int., Vol. 214, 2011, p. 48–58.
  • 13. Thornby J.; Landheer D.; Williams T. et al. Inconsistency in 9 mm bullets: Correlation of jacket thickness to post-impact geometry measured with non-destructive X-ray computed tomography, Forensic Science International, Vol. 234, 2014, p. 111–119.
  • 14. Rafaels K. A.; Lizins M. E.; Loftis K. L.; Bir C. A., The relationship between the shape of backface deformation and behind armour blunt trauma, Proceedings of the Personal Armour Systems Symposium, 2020, p. 183-193.
  • 15. NATO STANAG 2920 Ed.2;
  • 16. NATO STANAG 2920 Ed.3 – AEP 2920 Edition A, Version 1;
  • 17. U.S. Department of Justice National Institute of Justice. Available from: https://www.ojp.gov/pdffiles1/nij/nlectc/206095.pdf [access data 2023-06-01]
  • 18. Vereinigung der Prüfstellen für angriffshemmende Materialien und Konstruktionen (VPAM) Standard. Avaliable from: https://www.vpam.eu/pruefrichtlinien/aktuell/apr-2006/ [access data 2023-06-01]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37e974a5-d6c5-4c46-852b-85b077fb604b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.