PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing Cement Mortars Modified with Cork and Rubber Waste Using Theory of the Experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article concerns the possibility of obtaining modified cement mortars and assessing their selected properties, i.e. bending and compressive strength, volume density of hardened mortars and water absorption. The modification consisted in a partial (0–50% vol.) substitution of sand by waste, crushed rubber, and cork. In the mortar design process, the theory of the experiment was used. The central composite design used available in the Statistica software package was response surface. This approach allowed to significantly reduce the number of experiments, reduce costs, and at the same time keep the maximum information about the mortars tested. The conducted research showed that waste materials can be an alternative to natural aggregates in the process of obtaining light mortars.
Rocznik
Strony
121--130
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Rzeszow University of Technology, Department of Building Engineering, ul. Poznańska 2, 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Department of Building Engineering, ul. Poznańska 2, 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Department of Building Engineering, ul. Poznańska 2, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Rashad A.M. 2016. A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. International Journal of Sustainable Built Environment, 5(1), 46–82.
  • 2. Song W-J., Qiao W-G., Yang X-X., Lin D-G., Li Y-Z. 2018. Mechanical properties and constitutive equations of crumb rubber mortars. Construction and Building Materials 17, 660–669.
  • 3. Dębska B., Lichołai L., Miąsik P. 2019. Assessment of the Applicability of Sustainable Epoxy Composites Containing Waste Rubber Aggregates in Buildings. Buildings, 9(2), 31.
  • 4. Hilal N.N. 2017. Hardened properties of self-compacting concrete with different crumb rubber size and content. International Journal of Sustainable Built Environment, 6, 191–206.
  • 5. Pczieczek A., Schackow A., Effting C., Flores Dias T., Ribeiro Gomes I. 2017. Properties of mortars containing tire rubber waste and expanded polystyrene (EPS). Journal of Urban and Environmental Engineering, 11(2), 219–225.
  • 6. Yu Y., Zhu H. 2016. Influence of Rubber Size on Properties of Crumb Rubber Mortars. Materials 9, 527. https://doi.org/10.3390/ma9070527.
  • 7. Faizah R., Priyosulistyo H., Aminullah A. 2019. An Investigation on Mechanical Properties and Damping Behaviour of Hardened Mortar with Rubber Tire Crumbs (RTC). MATEC Web of Conferences, 258, 05002. https://doi.org/10.1051/matecconf/20192 258 5805002, 4.
  • 8. Sotiriadis K., Tupý M., Žižková N., Petránek V. 2014. Acid Attack on Cement Mortars Modified with Rubber Aggregates and EVA Polymer Binder. Civil and Environmental Engineering, 8(6). waset. org/Publication/9998405.
  • 9. Jusoh M.A., Abdullah S.R., Adnan S.H. 2018. Strength of mortar containing rubber tire particle. IOP Conference Series: Earth and Environmental Science 140, 012144. https://doi.org/10.1088/1755–1315/140/1/012144.
  • 10. Etli S., Cemalgil S., Onat O. 2018. Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate. International Journal of Pure and Applied Sciences and Technology, 4(1): 10–22.
  • 11. Bustamante A., Dablo G.M., Sia R., Arazo R. 2015. Physical and mechanical properties of composite brick from cement mortar, fly ash and rubber crumbs. 4(10). http://www.ijret.org.
  • 12. Aciu C. 2013. Possibilities of Recycling Rubber Waste in the Composition of Mortars. ProEnvironment, 6, 479–483. http://journals.usamvcluj.ro/index.php/promediu.
  • 13. Xue G., Cao M-L. 2017. Effect of Modified Rubber Particles Mixing Amount on Properties of Cement Mortar. Advances in Civil Engineering, 8643839. https://doi.org/10.1155/2017/8643839.
  • 14. Asutkar P., Shinde S.B., Patel R. 2017. Study on the behaviour of rubber aggregates concrete beams using analytical approach. Engineering Science and Technology, 20, 151–159.
  • 15. Brás A., Leal M., Faria P. 2013. Cement-cork mortars for thermal bridges correction. Comparison with cement-EPS mortars performance. Construction and Building Materials, 49, 315–327.
  • 16. Gil L. 2015. New Cork-Based Materials and Applications. Materials, 8, 625–637.
  • 17. Parra C., Sánchez E. M., Miñano I., Benito F., Hidalgo P. 2019. Recycled Plastic and Cork Waste for Structural Lightweight Concrete Production. Sustainability, 11, 1876. https://doi.org/10.3390/su11071876.
  • 18. Polański Z., Pietraszek J. 2007. Komputerowe wspomaganie planowania i analizy statystycznej doświadczalnych badań innowacyjnych, StatSoft, Rzeszów (in Polish).
  • 19. Dębska B.J., Dobrowolski L., Dębska B. 2018. Experiment-design methods in innovative polymer material planning. Journal of Applied Polymer Science 135(46), e46761. https://doi.org/10.1002/app.46761.
  • 20. Lichołai L., Dębska B., Krasoń J. 2019. Assessment of the applicability of a phase change material in horizontal building partitions. IOP Conference Series: Earth Environmental Science, 214 e012042. https://doi.org/10.1088/1755–1315/214/1/012042.
  • 21. Musiał M. 2018. Analysis of the impact of selected factors on the effectiveness of using PCM in mobile window insulation, E3S Web Conferences 49, e00073. https://doi.org/10.1051/e3sconf/20184900073.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37e8dcb1-96aa-4446-9410-10b871451774
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.