Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Chemical heat pumps (CHP) use reversible exothermal and endothermal chemical reactions to increase the temperature of working fluids. In comparison to the “classical” vapour compression chemical heat pumps, CHP enables us to achieve significantly higher temperatures of a heated medium which is crucial for the potential application, e.g. for production of superheated steam. Despite the advantages presented, currently, there are no installations using CHP for lowgrade waste heat recovery available on the market. The scaling up of industrial processes is still one of the greatest challenges of process engineering. The aim of the theoretical and experimental concept study presented here was to evaluate a method of reclaiming energy from low temperature waste streams and converting it into a saturated steam of temperature from 120 to 150 ◦C, which can be useful in industry. A chemical heat pump concept, based on the dilution and concentration of phosphoric acid, was used to test the method in the laboratory scale. The heat of dilution and energy needed for water evaporation from the acid solutionwere experimentally measured. The cycle of successive processes of dilution and concentration has been experimentally confirmed. A theoretical model of the chemical heat pump was tested and coefficient of performance measured.
Czasopismo
Rocznik
Tom
Strony
273–--279
Opis fizyczny
Bibliogr. 9 poz., tab., rys.
Twórcy
autor
- Chemat, 85A Przemysłowa St., 62-510 Konin, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, 213 Wolczanska St., 90-924 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, 213 Wolczanska St., 90-924 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, 213 Wolczanska St., 90-924 Lodz, Poland
Bibliografia
- 1.Chua K.J., Mujumdar A.S., Hawlader M.N.A., Chou S.K., Ho J.C., 2001. Batch drying of banana pieces – effect of stepwise change in drying air temperature on drying kinetics and product color. Food Res. Int., 34, 721–731. DOI: 10.1016/S0963-9969(01)00094-1.
- 2.Ducheyne W., Stevens C., Bonte S., Rousseau S., van der Pol E., 2017. New industrial chemical heat pump from Qpinch, 12th IEA Heat Pump Conference 2017, 15–18 May 2017 Rotterdam. Available in: http://hpc2017.org/wpcontent/uploads/2017/05/O.3.9.2-New-industrial-chemical-heat-pump-from-Qpinch.pdf.
- 3.Horuz I.K., Bener K., 2010. Absorption heat transformers and an industrial application. Renewable Energy, 35, 2175–2181. DOI: 10.1016/j.renene.2010.02.025.
- 4.Kato Y., Yamashita N., Kobayashi K., Yoshizawa Y., 1996. Kinetic study of the hydration of magnesium oxide for a chemical heat pump. Appl. Therm. Eng., 16, 853–862. DOI: 10.1016/1359-4311(96)00009-9.
- 5.Kawasaki H.,WatanabeT.,Kanzawa A.,1999.Proposal of a chemical heat pump with paraldehyde depolymerization for cooling system. Appl. Therm. Eng., 19, 133–143. DOI: 10.1016/S1359-4311(98)00043-X.
- 6.Millero F.J., Duer W.C., Shepard E., Chetirkin P.V., 1978. The enthalpies of dilution of phosphate solutions at 30 °C. J. Solution Chem., 7, 877–889. DOI: 10.1007/BF00645297.
- 7.Ogura H., Yamamoto T., Otsubo Y., Ishida H., Kage H., Mujumdar A.S., 2005. A control strategy for chemical heat pump dryer. Drying Technol., 23, 1189–203. DOI: 10.1081/DRT-200059337.
- 8.Wakefield Z., Luff B., Reed R., 1972. Heat capacity and enthalpy of phosphoric acid. J. Chem. Eng. Data, 17, 420–423. DOI: 10.1021/je60055a025.
- 9. WongsuwanW.,KumarS.,NeveuP.,MeunierF.,2001.Areviewofchemicalheatpumptechnologyandapplications. Appl. Therm. Eng., 21, 1489–1519. DOI: 10.1016/S1359-4311(01)00022-9.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37e49f84-6a6f-4e2a-92c1-446329e1cda2