Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Objective: To demonstrate the potential of PET imaging using scattered photons, we have proposed a novel technique that utilizes single-tissue-scattered events based solely on time-of-flight (TOF) information, without relying on energy data. Additionally, we explored the possibility of improving image quality by applying polarization selection criteria for true events. Methods: Due to Compton scattering within the phantom, scattered photons exhibit reduced energy, which remains unknown in our analysis. For a fixed scattering angle, the locus of the scattering point forms an arc of a circle in two dimensions (2D). With known TOF, we can trace the locus of the annihilation point for all possible scattering angles and positions. Our procedure involves identifying the annihilation-point loci corresponding to all pairs of single-scattered photons and merging them. In a separate study, we utilized the classical concept of orthogonal polarization of two annihilation photons, combined with energy filtering, to select genuine (true) events. Results: Our proof-of-concept study successfully demonstrated that the TOF-based approach could yield an image of a point source. The merging of annihilationpoint loci from numerous pairs of single-scattered photons produced a localized region for the source activity. The intensity profile showed a finite width of 14 mm for 1 ps uncertainty in TOF. Additionally, another analysis utilizing polarization and energy criteria generated a clean dataset for true events, with minimal background interference (containing random coincidences) at a high event rate. Conclusions: The simulation-based study validated our proposed model, indicating its potential to enhance the sensitivity and accuracy of event selection in PET imaging. These findings lay a solid foundation for further research into advanced PET imaging techniques that incorporate single-scattered events.
Słowa kluczowe
Czasopismo
Rocznik
Strony
10--16
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Indian Institute of Technology Bombay, India
autor
- Indian Institute of Technology Bombay, India
autor
- Indian Institute of Technology Bombay, India
Bibliografia
- 1. Zaidi H, Montandon M-L. Scatter compensation techniques in PET. PET Clin. 2014;2(2):219-34.
- 2. Bailey DL, Townsend DW, Valk PE, Maisey MN. Positron emission tomography. Basic Sciences. New York: Springer; 2005.
- 3. Conti M, Hong I, Michel C. Reconstruction of scattered and unscattered PET coincidences using TOF and energy information. Phys Med Biol. 2012;57(15):N307.
- 4. Hemmati H, Kamali-Asl A, Ay M, Ghafarian P. Compton scatter tomography in TOF-PET. Phys Med Biol. 2017;62(19):7641-58.
- 5. Ghosh S, Das P. Feasibility study of imaging with tissue-scattered triple-γ coincidence events in Compton-PET. JINST. 2022;17:P05040.
- 6. Yoshida E, Tashima H, Nagatsu K, Tsuji AB, Kamada K, Parodi K. Whole gamma imaging: a new concept of PET combined with Compton imaging. Phys Med Biol. 2020;65:125013.
- 7. Giovagnoli D, Bousse A, Beaupere N, Canot C, Cussonneau J-P, Diglio S, et al. A pseudo-TOF image reconstruction approach for three-gamma small animal imaging. IEEE Trans Rad Plas Med Sci. 2021:5(6):826-34.
- 8. Kolstein M, Chmeissani M. Using triple gamma coincidences with a pixelated semiconductor Compton-PET scanner: a simulation study. JINST. 2016;11:C01039.
- 9. Eppard E. Pre-therapeutic dosimetry employing scandium-44 for radiolabeling PSMA-617. In: Genadiev T, editors. Prostatectomy. London: IntechOpen; 2019. p. 1.
- 10. Ghosh S, Das P. Improvement of CNR in low-count PET scans using tissue-scattered data as initial estimate in non-TOF MLEM reconstruction. Biomed Phys Eng Express. 2023;9:035023.
- 11. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543.
- 12. Thielemans K, Tsoumpas C, Mustafovic S, Beisel T, Aguiar P, Dikaios N, et al. STIR: software for tomographic image reconstruction release 2. Phys Med Biol. 2012;57:867.
- 13. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv. 2021;7:eabh4394.
- 14. Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol. 2016;61(5):2025.
- 15. Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, et al. Positronium image of the human brain in vivo. Sci Adv. 2024;10:eadp2840.
- 16. Kuncic Z, McNamara A, Wu K, Boardman D. Polarization enhanced X-ray imaging for biomedicine. Nucl Inst Meth Phys Res A. 2011;648:S208-10.
- 17. Allison J, Amako K, Apostolakis J, Arce P, Asai M. Recent developments in geant4. Nucl Inst Meth Phys Res A. 2016;835:186-225.
- 18. McNamara AL, Toghyani M, Gillam JE, Wu K, Kuncic Z. Towards optimal imaging with PET: An in-silico feasibility study. Phys Med Biol. 2014;59:7587-600.
- 19. Moskal P, Krawczyk N, Hiesmayr BC, Bała M, Curceanu C, Czerwiński E, et al. Feasibility studies of the polarization of photons beyond the optical wavelength regime łwith the J-PET detector. Eur Phys J C, 2018; 78: 970.
- 20. Moskal P, Kumar D, Sharma S, Beyene EY, Chug N, Coussat A, et al. Nonmaximal entanglement of photons from positron-electron annihilation demonstrated using a novel plastic PET scanner. arXiv:2407.08574.
- 21. Moskal P, Czerwiński E, Raj J, Bass SD, Beyene EY, Chug N, et al. Discrete symmetries tested at 10-4 precision using linear polarization of photons from positronium annihilations. Nature Comm. 2024;15:78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37e162b2-638c-41b0-afd7-60c93d7092bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.