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Abstract  

Physical flow modes are of particular interest for Reduced Order Flow Control-Oriented Models. Computation 
of  physical modes as the eigensolution of linearized Navier-Stokes equations is a cumbersome and difficult 
task, especially for large, 3D problems. Instead we propose the solution of Navier-Stokes equation in 
the frequency domain and investigation of the system response to local or global perturbation. The flow varia-
bles are perturbed around steady basic state and the system response is  used to construct mode basis suitable 
for ROMs. 
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1. Introduction  

The Reduced Order Models (ROMs) of flow are often based on Galerkin Method [1]. 
This method strongly depends on flow mode basis. In flow modelling we can employ 
mathematical modes, empirical ones or eigenmodes of linearised system. The use of 
mathematical modes is rather a hypothetical solution as the mode basis can be hardly 
defined for general flow conditions. It has been proven that adequate use of both, empir-
ical and physical modes assures high dynamical quality of the flow model [2]. 

There are many well established methods to generate the empirical modes basis. Tra-
ditionally, Proper Orthogonal Decomposition (POD) [3,4] and its modifications are used 
for this purpose. Recently Dynamic Mode Decomposition (DMD) [5,6] being the dy-
namical system identification method is widely used. In the same time there is a substan-
tial progress in eigensolution of linearized Navier-Stokes equations [7,8,9] but eigenso-
lution of generalized, non-hermitian, complex eigenvalue problem remains  a cumber-
some and difficult task. It is particularly pronounced for discretized 3D flow problems, 
described  by systems of (0)106 Degrees of Freedom and requiring the eigensolution of 
such large eigenvalue problems. 

We present here an alternative, novel method of physical modes generation. It is 
based on solution of linearized disturbance equation in frequency domain. Flow varia-
bles are perturbed around steady basic state. Flow responses to random or localized 
volume forces characterized by assumed frequencies closely resemble eigenmodes.  
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2. Governing equations 

The incompressible fluid motion is described by the unsteady Navier-Stokes equation in 
the form: 

  (1) 

 The incompressibility condition is expressed by the continuity equation: 

  (2) 

The Reynolds number is defined as: 

  (3) 

where U  is characteristic velocity, L characteristic length and  kinematic viscosity of 
the fluid. 

We assume that the unsteady solution of the Navier-Stokes equation (1) can be ex-
pressed as the sum of its steady solution and the disturbance: 

  (4) 

This assumption leads us to the disturbance equation, in the form: 

  (5) 

Further we assume small value of the disturbance and linearize equation (5). In the dis-
turbance equation we separate the time and space dependence 

  (6) 

With introduction of equation (6) to the linearized disturbance equation (5) we obtain 
a differential eigenvalue problem having form: 

                  (7) 
Discretization of (7) gives: 

  (8) 

This equation represents the generalized complex, non-hermitian eigenvalue problem. 
The number of DOFs for (8) is usually very large, of order of (0)105 for two-dimensional 
problem and (0)106 for three-dimensional one. 

Particularly three-dimensional eigensystem is a challenging numerical problem to be 
solved. Eigenvalues are often complex conjugate pairs what causes additional problems 
for solution algorithms. 



 Vibrations in Physical Systems Vol.26 (2014) 191 

Instead of direct solution of (9) we investigate frequency response function having 
form: 

  (9) 

to localized or random forcing. In equation (9) we split real and imaginary part of 
the equation to use real value computer algebra. 

3. Flow solver for 2D and 3D computations 

Solution of disturbance equation in frequency domain required development of adequate 
numerical solver. It is based on our earlier UNS3 system (MF3 for structural problems) 
widely used in flow stability, control and Reduced Order Modelling [1]. UNS3 is based 
on unstructured FEM in penalty formulation and employs second and third order triangu-
lar (2D) or tetrahedral elements (3D).  

The three-dimensional version of the program is  parallelized and based on METIS 
[10] domain partitioning. UNS3 scales linearly up to hundreds of CPUs enabling compu-
tation on grids having several millions of  grid points. Two-dimensional solver uses 
scalar, single processor code. 

For purpose of frequency domain computation the Finite Element has doubled (for 
real and imaginary part) number of DOFs in comparison to our regular Navier-Stokes 
computations. In Figure 1 example grid partitioning to 16 domains, used later for 
the computations  of a  flow around sphere is shown. 

 

 
 

Figure 1. Finite Element (FEM) grid, domain partitioning and grid refinement 
for flow around a sphere  

4. Numerical results 

Solution of disturbance equation requires firstly steady basic solution of the Navier-
Stokes equations. It has been obtained with classical version of UNS3 code. In Figure 3 
the example steady solution for flow around the sphere at Re=250 is shown.  

In Figure 2 we present real and imaginary parts of the modes. It is relatively easy to 
obtain von Karman mode as depicted in the first row. It is  the response of the flow for 
random forcing and the complex value  of (0.1 + i 0.87) yields neutral stability  corrobo-



192 

rating the  results of flow stability analysis based on eigensolutions of the equation (8). 
In the second row the response to point volume force  at different frequencies and loca-
tions is shown. 

With the 2D results, closely following earlier stability analysis we apply the method 
to three-dimensional flows. For 3D flow the stability investigations are much more rare 
[8]. 

The results for the flow around a sphere at Re=250 are depicted in Figure 3. The so-
lution is obtained for random perturbation of the flow and develops around steady solu-
tion shown in the left part of the figure. Dominating mode is shown with the use of 
Lambda2 criterion. It shows characteristic periodicity of the flow and spreading angle of 
the shedding vortices.  

It should be noted that dominating mode can be relatively easy retrieved also with 
DMD or  POD method. In the case of POD physical modes can be found by analysis of 
time history of slightly perturbed steady solution.   
 

 

Figure 2. Real (left) and imaginary (right) part of the mode for different forcing of the 
flow around two-dimensional circular cylinder at Re = 100 

While for finding the dominating mode any of the mentioned method can be used, 
physical modes characterized by higher frequencies are difficult to determine. DMD 
method shows Fourier modes, doubling the mode frequency and POD determines ener-
getically optimal modes for the limit cycle being, however, not physical ones.   
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Figure 3. Steady flow around a sphere at Re=250 (left). Streamlines and wake contour 
is shown (isosurface of Vx = 0). Right: real (top) and imaginary (bottom) part 

of the dominating shedding mode visualized with the Lambda2 criterion 
 

 

Figure 4. Real and imaginary part of modes for the flow around the wall-mounted 
cylinder. Left: von Karman mode, right: higher, shear-layer mode 

In the next Figure 4 we show both, dominating Karman mode and higher one, deter-
mined with the presented here method. Flow develops around a wall-mounted cylinder.  

In Figure 5 the Lambda2 visualization (top view) of unsteady flow is also shown as 
the reference.   

5. Conclusions 

We presented a novel method of finding physical modes for complex, two- and three-
dimensional flows with the use of frequency domain solutions of linearized Navier-
Stokes equations. It has been shown that the method enables  computation of dominant 
modes as well as higher frequency ones. The modes determined with this method will 
serve as the basis for Reduced Order Models of the flow. The method can be also ap-
plied for  investigation of effect of flow actuators. Both placement and actuation charac-
ter can be modelled with the presented method. In this way flow control can be more 
effectively planned.   
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Figure 5. Unsteady flow around wall-mounted cylinder (top view) visualized 

with the Lambda2 criterion 
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