PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal conductivity of silicon doped by phosphorus: ab initio study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An original approach to the theoretical calculations of the heat conductivity of crystals based on the first principles molecular dynamics has been proposed. The proposed approach exploits the kinetic theory of phonon heat conductivity and permits calculating several material properties at certain temperature: specific heat, elastic constant, acoustic velocity, mean phonon scattering time and coefficient of thermal conductivity. The method has been applied to silicon and phosphorus doped silicon crystals and the obtained results have been found to be in satisfactory agreement with corresponding experimental data. The proposed computation technique may be applied to the calculations of heat conductivity of pure and doped semiconductors and isolators.
Wydawca
Rocznik
Strony
717--724
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Faculty of Electronics and Computer Sciences, Koszalin University of Technology, 2 Sniadeckich Str., PL-75-453, Koszalin, Poland bohdan.andriyevskyy@tu.koszalin.pl
autor
  • Faculty of Electronics and Computer Sciences, Koszalin University of Technology, 2 Sniadeckich Str., PL-75-453, Koszalin, Poland
  • The Ivan Franko National University of Lviv, 8 Cyril and Methodius Str., UA-79005 Lviv, Ukraine
  • The Ivan Franko National University of Lviv, 8 Cyril and Methodius Str., UA-79005 Lviv, Ukraine
Bibliografia
  • [1] LIDOW A., STRYDOM J., ROOIJ DE M., REUSCH D., GaN Transistors for Efficient Power Conversion, Wiley, 2015.
  • [2] BORGES R., Gallium nitride electronic devices for highpower wireless applications, Application Notes, RF Design, 2001, p. 72.
  • [3] BERNARDONI M., DELMONTE N., MENOZZI R., CS Mantech Conference, Boston, USA, April 23 - 26, 2012.
  • [4] PEREZ J.A.F., Thermal Study of a GaN-Based HEMT, PhD Dissertation, University of Notre Dame Indiana, 2012.
  • [5] VISALLI D., Optimization of GaN-on-Si HEMTs for High Voltage Applications, PhD Dissertation, Katholieke Universiteit Leuven, 2011.
  • [6] FORNETTI F., Characterisation and Performance Optimisation of GaN HEMTs and Amplifiers for Radar Applications, PhD Dissertation, University of Bristol, 2010.
  • [7] MACFARLANE D.J., Design and fabrication of Al- GaN/GaN HEMTs with high breakdown voltages, PhD Dissertation, School of Engineering, University of Glasgow, 2014.
  • [8] VITANOV S., PALANKOVSKI V., MAROLDT S., QUAY R., Solid-State Electron., 54 (2010), 1105.
  • [9] STACKHOUSE S., STIXRUDE L., Rev. Mineral. Geochem., 71 (2010), 253.
  • [10] GREEN M.S., J. Chem. Phys., 22 (1954), 398.
  • [11] KUBO R., J. Phys. Soc. Japan, 12 (1957), 570.
  • [12] KUBO R., Rep. Prog. Phys., 29 (1966), 255.
  • [13] MULLERPLATHE F.J., Chem. Phys., 106 (1997), 6082.
  • [14] ZIMAN J.M., Electrons and Phonons, Oxford University Press, 2001.
  • [15] KRESSE G., JOUBERT D., Phys. Rev. B, 59 (1999), 1758.
  • [16] BLÖCHL P.E., Phys. Rev. B, 50 (1994), 17953.
  • [17] RÓG T., MURZYN K., HINSEN K., KNELLER G.R., J. Comput. Chem., 24 (2003), 657.
  • [18] KAERGER J., GRINBERG F., HEITJANS P., Diffusion fundamentals, Leipzig University, 2005.
  • [19] ROHLF J.W., Modern Physics from A to Z, John Wiley & Sons Inc, 1994.
  • [20] BLATT F.J., Modern Physics, McGraw-Hill, New York, 1992.
  • [21] KLEMENS P.G., GELL M., Mat. Sci. Eng. A, 245 (1998), 143.
  • [22] TAMURA S., SHIELDS J.A., WOLFE J.P., Phys. Rev. B, 44 (1991), 3001.
  • [23] NIKANOROV S.P., BURENKOV YU.A., STEPANOV A.V., Sov. Phys. Solid State, 13 (1971), 2516.
  • [24] OKHOTIN A.S., PUSHKARSKII A.S., GORBACHEV V.V., Thermophysical Properties of Semiconductors, "Atom" Publ. House, 1972. (in Russian).
  • [25] DESAL P.D., J. Phys. Chem. Ref. Data, 15 (1986), 967.
  • [26] SHANKS H.R., MAYCOCK P.D., SIDLES P.H., DANIELSON G.C., Phys. Rev., 130 5 (1963), 1743.
  • [27] GLASSBRENNER C.J., SLACK G.A., Phys. Rev., 134 (1964), A1058.
  • [28] LEE Y., HWANG G.S., Phys. Rev. B, 86 (2012), 075202.
  • [29] ASHEGHI M., KURAB K., KASNAVI R., GOODSON K.E., J. Appl. Phys., 91 (2002), 5079.
  • [30] JIN J.S., J. Mechan. Sci.Technol., 28 (2014), 2287.
  • [31] XIEL J., LEE C., WANG M.-F., LIU Y., FENG H., J. Micromech. Microeng., 19 (2009), 125029.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37dfff24-ff89-4edf-b753-0f7694943b4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.