PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of the Bonding Zone in a ZE41/AlSi12 Joint Fabricated by Liquid- Solid Compound Casting

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study involved using the liquid-solid compound casting process to fabricate a lightweight ZE41/AlSi12 bimetallic material. ZE41 melt heated to 660 °C was poured onto a solid AlSi12 insert placed in a steel mold. The mold with the insert inside was preheated to 300 °C. The microstructure of the bonding zone between the alloys was examined using optical microscopy and scanning electron microscopy. The chemical composition was determined through linear and point analyses with an energy-dispersive X-ray spectroscope (EDS). The bonding zone between the magnesium and aluminum alloys was about 250 μm thick. The results indicate that the microstructure of the bonding zone changes throughout its thickness. The structural constituents of the bonding zone are: a thin layer of a solid solution of Al and Zn in Mg and particles of Mg-Zn-RE intermetallic phases (adjacent to the ZE41 alloy), a eutectic region (Mg17(Al,Zn)12 intermetallic phase and a solid solution of Al and Zn in Mg), a thin region containing fine, white particles, probably Al-RE intermetallic phases, a region with Mg2Si particles distributed over the eutectic matrix, and a region with Mg2Si particles distributed over the Mg-Al intermetallic phases matrix (adjacent to the AlSi12 alloy). The microstructural analysis performed in the length direction reveals that, for the process parameters tested, the bonding zone forming between the alloys was continuous. Low porosity was observed locally near the ZE41 alloy. The shear strength of the AZ91/AlSi17 joint varied from 51.3 to 56.1 MPa.
Rocznik
Strony
203--208
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
  • Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • [1] Avci, A., Ilkaya, N., Simsir, M.M. & Akdemir, A. (2009). Mechanical and microstructural properties of low-carbon steel-plate-reinforced gray cast iron. Journal of Materials Processing Technology. 209(3), 1410-1416.
  • [2] Wróbel, T. (2014). Characterization of bimetallic castings with an austenitic working surface layer and an unalloyed cast steel base. Journal of Materials Engineering and Performance. 23(5), 1711-1717.
  • [3] Wróbel, T. & Szajnar, J. (2015). Bimetallic casting: ferritic stainless steel-grey cast iron. Archives of Metallurgy and Materials. 60(3), 2361-2365.
  • [4] Choe, K.H., Park, K.S., Kang, B.H., Cho, G.S., Kim, K.Y., Lee, K.W., Kim, M.H., Ikenaga, A. & Koroyasu, S. (2008). Study of the interface between steel insert and aluminum casting in EPC. Journal of Materials Science & Technology. 24, 60-64.
  • [5] Szymczak, T. (2011). The influence of selected technological factors on the quality of bimetallic castings alloy steel-silumin. Archives of Foundry Engineering. 11(3), 215-226.
  • [6] Zare, G.R., Divandari, M. & Arabi, H. (2013). Investigation on interface of Al/Cu couples in compound casting. Materials Science and Technology. 29, 190-196.
  • [7] Papis, K.J.M., Loeffler, J.F. & Uggowitzer, P.J. (2009). Light metal compound casting. Science in China Series E: Technological Sciences. 52(1), 46-51.
  • [8] Papis, K.J.M., Hallstedt, B., Löffler, J.F. & Uggowitzer, P.J. (2008). Interface formation in aluminium - aluminium compound casting. Acta Materialia. 56, 3036-3043.
  • [9] Sun, J., Song, X., Wang, T., Yu, Y., Sun, M., Cao, Z. & Li, T. (2012). The microstructure and property of Al-Si alloy and Al-Mn alloy bimetal prepared by continuous casting. Materials Letters. 67, 21-23.
  • [10] Papis, K.J.M., Löffler, J.F. & Uggowitzer, P.J. (2010). Interface formation between liquid and solid Mg alloys - an approach to continuously metallurgic joining of magnesium parts. Materials Science and Engineering. A 527, 2274-2279.
  • [11] Dziadoń, A. & Mola, R. (2013). Magnesium – trends of development of mechanical properties. Obróbka plastyczna metali. 24(4), 253-277.
  • [12] Paramsothy, M., Srikanth, N. & Gupta, M. (2008). Solidification processed Mg/Al bimetal macrocomposite: Microstructure and mechanical properties. Journal of Alloys and Compound. 461, 200-208.
  • [13] Hajjari, E., Divandari, M., Razavi, S.H., Emami, S.M., Homma, T. & Kamado, S. (2011). Dissimilar joining of Al/Mg light metals by compound casting process. Journal of Materials Science. 46, 6491-6499.
  • [14] Hajjari, E., Divandari, M., Razavi, S.H., Homma, T. & Kamado, S. (2012). Intermetallic compounds and antiphase domains in Al/Mg compound casting. Intermetallics. 23, 182-186.
  • [15] Emami, S.M., Divandari, M., Arabi, H. & Hajjari, E. (2013). Effect of melt-to-solid insert volume ratio on Mg/Al dissimilar metals bonding. Journal of Materials Engineering and Performance. 22(1), 123-130.
  • [16] Mola, R., Bucki, T. & Dziadoń, A. (2016). Formation of Al-alloyed layer on magnesium with use of casting techniques. Archives of Foundry Engineering. 16(1), 112-116.
  • [17] Li, G., Jiang, W., Fan, Z., Jiang, Z. & Liu, X. (2016). Effects of pouring temperature on microstructure, mechanical properties, and fracture behavior of Al/Mg bimetallic composites produced by lost foam casting process. The International Journal of Advanced Manufacturing Technology. 91(1-4), 1355-1368.
  • [18] Mola, R., Bucki, T. & Dziadoń, A. (2017). Effects of the pouring temperature on the formation of the bonding zone between AZ91 and AlSi17 in the compound casting process. IOP Conference Series: Materials Science and Engineering. 179(1), 1-6.
  • [19] Mola, R., Bucki, T. & Dziadoń, A. (2017). Microstructure of the bonding zone between AZ91 and AlSi17 formed by compound casting. Archives of Foundry Engineering. 17(1), 202-206.
  • [20] Mola, R. & Bucki, T. (2018). The microstructure and properties of the bimetallic AZ91/AlSi17 joint produced by compound casting. Archives of Foundry Engineering. 18(1), 71-76.
  • [21] Wei, L.Y., Dunlop, G.L. & Westengen, H. (1995). Percipitation hardening of Mg-Zn and Mg-Zn-RE alloys. Metallurgical and Materials Transactions. A 26, 1705-1716.
  • [22] Huang, M.L., Li, H.X., Ding, H., Ren, Y.P., Qin, G.W. & Hao, S.M. (2009). Partial phase relationship of Mg-Zn-Ce system at 350°C. The Transactions of Nonferrous Metals Society of China. 19, 681-685.
  • [23] Neil, W.C., Forsyth, M., Howlett, P.C., Hutchinson, C.R. & Hinton, B.R.W. (2011). Corrosion of heat treated magnesium alloy ZE41. Corrosion Science. 53(10), 3299-3308.
  • [24] Ohno, M., Mirkovic, D. & Schmid-Fetzer, R. (2006) Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys. Materials Science and Engineering. A 421, 328-337.
  • [25] Chaubey, A.K., Scudino, S., Prashanth, K.G. & Eckert, J. (2015). Microstructure and mechanical properties of Mg-Al-based alloy modified with cerium. Materials Science and Engineering. A 625, 46-49.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37de9c06-9deb-4836-ace0-3fce41575978
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.