Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The utilization of readily accessible natural fibres in lightweight foamed concrete (LWFC), which is already a widely used building material, can have a substantial positive impact on the environment. Therefore, the mechanical characteristics might be increased by using a correct mix proportion of fibre-reinforced LWFC. Innovative LWFC-agave fibre (AF) composites were created in this experiment. In order to get the best mechanical qualities, this investigation set out to establish the correct weight fraction of AF to be added to LWFC. Two LWFC densities of 750 and 1500 kg/m3 were produced with the addition of several weight fractions of AF, precisely 0.0%, 1.5%, 3.0%, 4.5%, 6.0%, and 7.5%, were used. To establish the mechanical characteristics of LWFCAF composites, flexural tests, tensile strength tests, axial compression tests, and ultrasonic pulse velocity tests were carried out. Test results revealed that the combination of LWFC together with a weight fraction of 4.5% of AF exhibited superior mechanical properties. Beyond 4.5% of AF’s weight fraction, the mechanical properties started to deteriorate. This study gives insight and crucial data on the mechanical characteristics of LWFC-AF composites therefore it will enable future researchers to explore other properties of LWFC reinforced with AF.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
753--759
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab.
Twórcy
autor
- Universiti Sains Malaysia, School of Housing, Building and Planning, 11800, Penang, Malaysia
- Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis 01000 Perlis, Malaysia
autor
- Universiti Tun Hussein Onn Malaysia (UTHM), Faculty of Technology Management and Business, Department of Construction Management, Parit Raja, Batu Pahat, Johor 86400, Malaysia
autor
- University of Warith Al-Anbiyaa, College of Engineering, Karbala, 56001, Iraq
- Liverpool John Moores University, School of Civil Engineering and Built Environment, Liverpool L3 2ET, UK
autor
- Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis 01000 Perlis, Malaysia
autor
- Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 19C Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
- [1] N.M. Ibrahim, R. Che Amat, M. Abdul Rahim, N.L. Rahim, A.R. Abdul Razak, Reclamation and Reutilization of Incinerator Ash in Artificial Lightweight Aggregate. Arch. Metall. Mater. 67 (1), 269-275 (2022). DOI: https://doi.org/10.24425/amm.2022.137501
- [2] M.N.M. Nawi, W.N. Osman, M.K. Rofie, A. Lee, Supply chain management (SCM): Disintegration team factors in Malaysian Industrialised Building System (IBS) construction projects. Int. J. Supply Chain Manag. 7 (1), 140-143 (2018).
- [3] M. Arivoli, R. Malathy, Optimization of Packing Density of M30 Concrete with Steel Slag As Coarse Aggregate Using Fuzzy Logic. Arch. Metall. Mater. 62 (3), 1903-1908 (2017). DOI: http://dx.doi.org/10.1515/amm-2017-0288
- [4] M. Nowak, Z. Nowak, R.B. Pęcherski, M. Potoczek, R.E. Śliwa, Assessment of Failure Strength of Real Alumina Foams with Use of the Periodic Structure Model, Arch. Metall. Mater. 63 (4), 1903-1908 (2018). DOI: http://dx.doi.org/10.24425/amm.2018.125122
- [5] R. Abd Razak, S.N.S. Sy Izman. M.M.A.B. Abdullah, Z. Yahya, A. Abdullah, R. Mohamed, Properties and Morphology of Fly Ash Based Alkali Activated Material (AAM) Paste Under Steam Curing Condition. Arch. Metall. Mater. 68 (2), 785-789 (2023). DOI: https://doi.org/10.24425/amm.2023.142462
- [6] A.M.J. Esruq-Labin, A.I. Che-Ani, N.M. Tawil, M.N.M. Nawi, Criteria for Affordable Housing Performance Measurement: A Review. E3S Web Conf. 3, 01003 (2014). DOI: https://doi.org/10.1051/e3sconf/20140301003
- [7] S. Ganesan, A.A.I. Che, N. Sani, Performance of polymer modified mortar with different dosage of polymeric modifier. MATEC Web Conf. 15, 01039 (2014). DOI: http://dx.doi.org/10.1051/matecconf/20141501039
- [8] R. Szabó, I. Gombkötő, M. Svéda, G. Mucsi, Effect of Grinding Fineness of Fly Ash on the Properties of Geopolymer Foam. Arch. Metall. Mater. 62 (2B), 1257-1261 (2017). DOI: http://dx.doi.org/10.1515/amm-2017-0188
- [9] M. Ibrahim, W.M. Wan Ibrahim, M.M.A.B. Abdullah, A.S. Sauffi, P. Vizureanu, Effect of solid-to-liquids and Na2SiO3-To-NaOH ratio on Metakaolin Membrane Geopolymers. Arch. Metall. Mater. 67 (2), 695-702 (2022). DOI: https://doi.org/10.24425/amm.2022.137808
- [10] M.A. Tambichik, A.A. Abdul Samad, N. Mohamad, A.Z. Mohd Ali, M.Z. Mohd Bosro, M.A. Iman, Effect of Combining Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) as partial cement replacement to the compressive strength of concrete. Int. J. Integr. Eng. 10 (8), 61-67 (2018). DOI: http://dx.doi.org/10.30880/ijie.2018.10.08.004
- [11] Y. Liu, Z. Wang, Z. Fan, J. Gu, Study on properties of sisal fiber modified foamed concrete, IOP Conf. ser.: Mater. Sci. Eng. 744 (1), 012042 (2020). DOI: http://dx.doi.org/10.1088/1757-899X/744/1/012042
- [12] L. Yu, Z. Liu, M. Jawaid, E.R. Kenawy, Mechanical properties optimization of fiber reinforced foam concrete. MATEC Web of Conf. 67, 03022 (2016). DOI: http://dx.doi.org/10.1051/matecconf/20166703022
- [13] H. Awang, A.F. Roslan, Effects of fibre on drying shrinkage, compressive and flexural strength of lightweight foamed concrete. Adv. Mater. Res. 587, 144-149 (2012). DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.587.144
- [14] W. Ashraf, Carbonation of cement-based materials: Challenges and opportunities. Construct. Build. Mater. 120, 558-570 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.080
- [15] W. She, Y.I. Du, C. Miao, J. Liu, G. Zhao, J. Jiang, Y. Zhang, Application of organic and nanoparticle-modified foams in foamed concrete: Reinforcement and stabilization mechanisms. Cement Concr. Res. 106, 12-22 (2018). DOI: https://doi.org/10.1016/j.cemconres.2018.01.020
- [16] M.R. Jones, K. Ozlutas, L.I. Zheng, Stability and instability of foamed concrete. Mag. Concr. Res. 68 (11), 542-549 (2016). DOI: https://doi.org/10.1680/macr.15.00097
- [17] M.H. Nensok, H. Awang, Investigation of Thermal, Mechanical and Transport Properties of Ultra Lightweight Foamed Concrete (UFC) Strengthened with Alkali Treated Banana Fibre. J. Adv. Res. Fluid Mech. Therm. Sci. 86, 123-139 (2021). DOI: http://dx.doi.org/10.37934/arfmts.86.1.123139
- [18] E. Serri, M.Z. Suleiman, The influence of mix design on mechanical properties of oil palm shell lightweight concrete. J. Mater. Environ. Sci. 6, 607-612 (2015).
- [19] M.H. Nensok, H. Awang, Fresh state and mechanical properties of ultra-lightweight foamed concrete incorporating alkali treated banana fibre. J. Teknol. 84 (1), 117-128 (2022). DOI: https://doi.org/10.11113/jurnalteknologi.v84.16892
- [20] C. Kramer, T.L. Kowald, R.H.F. Trettin, Pozzolanic hardened three-phase-foams. Pozzolanic Hardened Three-Phase-Foams. Cement Concr. Res. 62, 44-51 (2015). DOI: https://doi.org/10.1016/j.cemconcomp.2015.06.002
- [21] S.S. Suhaili, M.A. Othuman Mydin, H. Awang, Influence of Mesocarp Fibre Inclusion on Thermal Properties of Foamed Concrete. J. Adv. Res. Fluid Mech. Therm. Sci. 87 (1), 1-11 (2021). DOI: https://doi.org/10.37934/arfmts.87.1.111
- [22] K. Ramamurthy, E.K. Nambiar, G.I.S. Ranjani, A classification of studies on properties of foam concrete. Cem. Concr. Compos. 31 (6), 388-396 (2009). DOI: https://doi.org/10.1016/j.cemconcomp.2009.04.006
- [23] M.R. Jones, A. McCarthy, Preliminary views on the potential of foamed concrete as a structural material. Mag. Concr. Res. 57 (1) 21-31 (2005). DOI: http://dx.doi.org/10.1680/macr.57.1.21.57866
- [24] M.R. Ahmad, B. Chen, S.F.A. Shah, Investigate the influence of expanded clay aggregate and silica fume on the properties of lightweight concrete. Constr. Build. Mater. 220, 253-266 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.171
- [25] O. Gencel, M. Nodehi, O.Y. Bayraktar, G. Kaplan, A. Benli, A. Gholampour, T. Ozbakkaloglu, Basalt fiber-reinforced foam concrete containing silica fume: An experimental study. Constr. Build. Mater. 326, 126861 (2022). DOI: https://doi.org/10.1016/j.conbuildmat.2022.126861
- [26] A. Raj, D. Sathyan, K.M. Mini, Physical and functional characteristics of foam concrete: A review. Constr. Build. Mater. 221-787-799 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.052.
- [27] A.M. Serudin, M.A. Othuman Mydin, A.N.A. Ghani, Influence of Fibreglass Mesh on Physical Properties of Lightweight Foamcrete. IIUM Eng. J. 22 (1), 23-34 (2021). DOI: http://dx.doi.org/10.31436/iiumej.v22i1.1446
- [28] M. Musa, A.N. Abdul Ghani, Influence of oil palm empty fruit bunch (EFB) fibre on drying shrinkage in restrained lightweight foamed mortar. Int. J. Innov. Techol. Exp. Eng. 8 (10), 4533-4538 (2019).
- [29] N.M. Zamzani, A.N.A. Ghani, Effectiveness of ‘cocos nucifera linn’ fibre reinforcement on the drying shrinkage of lightweight foamed concrete. ARPN J. Eng. Appl. Sci. 14 (22), 3932-3937 (2019).
- [30] A.M. Serudin, M.A. Othuman Mydin, A.N.A. Ghani, Effect of lightweight foamed concrete confinement with woven fiberglass mesh on its drying shrinkage. Rev. Ing. de Construccion. 36 (1), 21-28 (2021). DOI: http://dx.doi.org/10.4067/s0718-50732021000100021
- [31] G. Krishnan, K.B. Anand, Industrial waste utilization for foam concrete, IOP Conf. Series Mater. Sci. Eng. 310 (1), 012062 (2018). DOI: https://doi.org/10.1088/1757-899X/310/1/012062
- [32] R. Bayuaji, The influence of microwave incinerated rice husk ash on foamed concrete workability and compressive strength using Taguchi method. J. Teknol. 75, 265-274 (2015). DOI: https://doi.org/10.11113/jt.v75.3804
- [33] S.S. Suhaili, M.A. Othuman Mydin, Potential of stalk and spikelets of empty fruit bunch fibres on mechanical properties of lightweight foamed concrete. Int. J. Sci. Technol. Res. 9 (3), 3199-3204 (2020).
- [34] D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo, Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Constr. Build. Mater. 198, 479-493 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.197
- [35] O. Onuaguluchi, N. Banthia, Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 68, 96-108 (2016). DOI: https://doi.org/10.1016/j.cemconcomp.2016.02.014
- [36] M.S. Mahzabin, L.J. Hock, M.S. Hossain, L.S. Kang, The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Constr. Build. Mater. 178, 518-528 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.169
- [37] D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo, Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Compos. Struct. 209, 45-59 (2019). DOI: https://doi.org/10.1016/j.compstruct.2018.10.092
- [38] J.F. Castillo-Lara, E.A. Flores-Johnson, A. Valadez-Gonzalez, P.J. Herrera-Franco, J.G. Carrillo, P.I. Gonzalez-Chi, Q.M. Li, Mechanical properties of natural fiber reinforced foamed concrete. Materials. 13 (14), 3060 (2020). DOI: https://doi.org/10.3390/ma13143060
Uwagi
This research has received funding from the Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (FRGS/1/2022/TK01/USM/02/3)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37de8c99-4e47-42eb-9ba6-28faf12cbe20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.