PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Koncepcja wykorzystania metody termofalowej oraz pomiarów termowizyjnych do wyznaczania parametrów cieplnych materiałów termoizolacyjnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The concept of using periodic heating technique for determination of thermal parameters of heat insulation materials
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki badań nad opracowywaną metodą wyznaczania parametrów cieplnych materiałów termoizolacyjnych. W metodzie tej wykorzystano wymuszenie temperatury o charakterze harmonicznym. Do pomiaru rozkładu temperatury w eksperymencie użyto kamery termowizyjnej. W badaniach symulacyjnych wykorzystano stworzony trójwymiarowy model zjawiska dyfuzji ciepła w badanej próbce materiału. Do rozwiązania współczynnikowego zagadnienia odwrotnego zaproponowano koncepcję wykorzystania sztucznej sieci neuronowej.
EN
The paper presents results of research on the developed method for determining thermal parameters of a thermal insulating material [2]. This method applies periodic heating as an excitation and an infrared camera is used to measure the temperature distribution on the surface of the tested material – Sections 2 and 3. The author proposed the use of a three-dimensional model of the heat diffusion in a material sample. For solving the system of partial differential equations, the finite element method was applied [11] – Section 2. To solve the coefficient inverse problem, an approach using an artificial neural network is proposed – Section 3. The usability of the artificial neural network in solving the inverse heat transfer problem in a sample of heat insulation material is presented [12, 13]. The network determines the value of effective thermal conductivity and effective thermal diffusivity on the basis of the temperature distribution on the surface of the tested material. Additionally, the influence of the input quantity errors on the estimated values of the thermal parameters was also analysed using the Monte Carlo technique [15] – Section 4. A trained neural network based on the temperature responses on the lateral surface of the sample measured by infrared thermography, quickly would determine the thermo-physical parameters. The obtained results confirm the usefulness of applying artificial intelligence methods to solving the coefficient inverse problem when using infrared measurement methods.
Wydawca
Rocznik
Strony
920--923
Opis fizyczny
Bibliogr. 16 poz., rys., schem. tab., wykr.
Twórcy
autor
  • Politechnika Częstochowska, Wydział Elektryczny, Al. Armii Krajowej 17, 42-200 Częstochowa
autor
  • Politechnika Częstochowska, Wydział Elektryczny, Al. Armii Krajowej 17, 42-200 Częstochowa
Bibliografia
  • [1] Praca zbiorowa: Pomiary cieplne. WNT, Warszawa 1995.
  • [2] Minkina W., Chudzik S.: Pomiary parametrów cieplnych materiałów termoizolacyjnych – przyrządy i metody. Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2004, ISBN 83-7193-216-2.
  • [3] Chudzik S.: Measurement of thermal parameters of a heat insulating material using infrared thermography. Infrared Physics and Technology, 55, 2012, 73-83.
  • [4] Chudzik S.: Measurement of thermal diffusivity of insulating material using the artificial neural network. Measurement Science and Technology, 23, 2012, 065602.
  • [5] Chudzik S.: The idea of using artificial neural network in measurement system with hot probe for testing parameters of heat-insulating materials. Measurement 42, 2009, 764–770.
  • [6] Chudzik S., Minkina W.: An idea of a measurement system for determining thermal parameters of a heat insulation materials. Metrology and Measurement Systems, 18, 2011, 261-273.
  • [7] Chudzik S.: Mesuring system with a dual needle probe for testing the parameters of heat-insulating materials. Measurement Science and Technology, 22, 2011, 075703.
  • [8] Marinetti S., Bison P. G., Grinzato E., Musico A.: Thermal diffusivity measurement of stainless steel by periodic heating technique. AITA Adv. Infrared Technol. Appl. Venezia 1999, 316–321.
  • [9] Maldague X.: Theory and Practice of Infrared Technology for Nondestructive Testing. John Wiley & Sons, Inc., New York, 2001.
  • [10] Gralewicz G., Owczarek G., Więcek B.: Investigations of single and multilayer structures using lock-In thermography – possible applications. JOSE Int. J. Occupat. Saf. Ergon. 11, 2005, 211–215.
  • [11] Praca zbiorowa, Szargut J. (red.): Modelowanie numeryczne pól temperatury. WNT, Warszawa 1992.
  • [12] Daponde P., Grimaldi D.: Artifical neural networks in measurements. Measurement 23, 1998, 93-115.
  • [13] Osowski S.: Sieci neuronowe w ujęciu algorytmicznym. WNT Warszawa 1996.
  • [14] Minkina W., Dudzik S.: Infrared Thermography – Errors and Uncertainties. John Wiley & Sons Ltd., Chichester, 2009.
  • [15] Guide to the Expression of Uncertainty in Measurement. Supplement 1. Numerical Methods for the Propagation of Distributions – projekt dokumentu Międzynarodowego Biura Miar z 16.03.2004.
  • [16] Taler J., Duda P.: Solving Direct and Inverse Heat Conduction Problems. Springer, Berlin 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37d80c0f-6d01-4232-994a-9002c5a9f631
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.