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Shape Coefficients via Method of Hurwitz-Radon Matrices 

1.   Introduction 

A significant problem in object recognition and computer vision [1] is that of appropriate 

shape representation and reconstruction. Classical discussion about shape representation is 

based on the problem: contour versus skeleton. This paper is voting for contour which forms 

boundary of the object. Contour of the object, represented by contour points, consists of 

information which allows us to describe many important features of the object as the shape 

coefficients [2].  

A digital curve (open or closed) may be represented by chain code (Freeman’s code). Chain 

code depends on selection of the started point and transformations of the object. So Freeman’s 

code is one of the method how to describe and to find contour of the object. An analog 

(continuous) version of Freeman’s code is the curve  - s. Another contour representation and 

reconstruction is based on the Fourier coefficients calculated in Discrete Fourier 

Transformation (DFT). These coefficients are used to fix similarity of the contours with 

different sizes or directions. If we assume that a contour is built from the segments of a line 

and fragments of circles or ellipses, Hough transformation is applied to detect the contour 

lines. Also geometrical moments of the object are used during the process of object shape 

representation [3]. MHR method requires to detect specific points of the object contour, for 

example in compression and reconstruction of monochromatic medical images [4]. Contour is 

also applied in the shape decomposition [5]. Many branches of medicine, for example 

computed tomography [6], need suitable and accurate methods of contour reconstruction [7]. 

Also industry and manufacturing are looking for the methods connected with geometry of the 

contour [8]. So suitable shape representation and precise reconstruction or interpolation [9] of 

the object contour is a key factor in many applications of computer analysis and image 

processing. 

 

2. Contour Representation 

The shape can be represented by the object contour, i.e. curves that create each part of the 

contour. One curve is described by the set of nodes (xi,yi)  R
2
 (contour points) as follows in 

proposed method: 

1. nodes (interpolation points) are settled at local extrema (maximum or minimum) of one of 

coordinates and at least one point between two successive local extrema; 



2. nodes (xi,yi) are monotonic in coordinates xi (xi < xi+1 for all i) or yi (yi < yi+1); 

3. one curve (one part of the contour) is represented by at least five nodes. 

 

   Condition 1 is done for the most appropriate description of a curve. So we have m curves 

C1, C2, ... Cm that build whole contour and each curve is represented by the nodes according to 

assumptions 1-3. 

 
Fig. 1. A contour consists of three parts (three curves and their nodes) 

 

Fig.1 is an example for m = 3: first part of the contour C1 is represented by the nodes 

monotonic in coordinates xi, second part of the contour C2 is represented by the nodes 

monotonic in coordinates yi and third part C3 could be represented by the nodes either 

monotonic in coordinates xi or monotonic in coordinates yi. Number of the curves is optional 

and number of the nodes for each curve is optional too (but at least five nodes for one curve). 

Representation points are treated as interpolation nodes. How accurate can we reconstruct 

whole contour using representation points? The contour reconstruction is possible using novel 

MHR method. 

 

3. Contour Reconstruction 

The following question is important in mathematics and computer sciences: is it possible to 

find a method of curve interpolation in the plane without building the interpolation 

polynomials or other functions? Our paper aims at giving the positive answer to this question. 

In comparison MHR method with Bézier curves, Hermite curves and B-curves (B-splines) or 

NURBS one unpleasant feature of these curves must be mentioned: a small change of one 

characteristic point can make big change of whole reconstructed curve. Such a feature does 

not appear in MHR method. The methods of curve interpolation based on classical 

polynomial interpolation: Newton, Lagrange or Hermite polynomials and the spline curves 

which are piecewise polynomials [10]. Classical methods are useless to interpolate the 

function that fails to be differentiable at one point, for example the absolute value function 

f(x) = xat x=0. If point (0;0) is one of the interpolation nodes, then precise polynomial 

interpolation of the absolute value function is impossible. Also when the graph of interpolated 

function differs from the shape of polynomials considerably, for example f(x) = 1/x, 

interpolation is very hard because of existing local extrema of polynomial. Lagrange 

interpolation polynomial for function f(x) = 1/x and nodes (5;0.2), (5/3;0.6), (1;1), (5/7;1.4), 

(5/9;1.8) has one minimum and two roots. 



 
Fig. 2. Lagrange interpolation polynomial for nodes (5;0.2), (5/3;0.6), (1;1), (5/7;1.4), (5/9;1.8) differs 

extremely from the shape of function f(x) = 1/x 

 

We cannot forget about the Runge’s phenomenon: when the interpolation nodes are 

equidistance then high-order polynomial oscillates toward the end of the interval, for example 

close to -1 and 1 with function f(x) = 1/(1+25x
2
) [11]. Method of Hurwitz – Radon Matrices 

(MHR), described in this paper, is free of these bad features. The curve or function in MHR 

method is parameterized for value   [0;1] in the range of two successive interpolation 

nodes. 

 

3.1.   The Operator of Hurwitz-Radon  

 

Adolf Hurwitz (1859-1919) and Johann Radon (1887-1956) published the papers about 

specific class of matrices in 1923, working on the problem of quadratic forms. Matrices Ai, i = 

1,2…m satisfying 

AjAk+AkAj = 0, Aj
2 

= -I  for  j ≠ k; j, k = 1,2...m 

 

are called a family of Hurwitz - Radon matrices. A family of Hurwitz - Radon (HR) matrices 

has important features [12]: HR matrices are skew-symmetric (Ai
T 

= - Ai) and reverse matrices 

are easy to find (Ai
-1 

= - Ai). Only for dimension N = 2, 4 or 8 the family of HR matrices 

consists of N - 1 matrices. For N = 2 we have one matrix: 
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For N = 4 there are three HR matrices with integer entries: 
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For N = 8 we have seven HR matrices with elements 0, ±1 [4]. So far HR matrices are applied 

in electronics [13]: in Space-Time Block Coding (STBC) and orthogonal design [14], also in 

signal processing [15] and Hamiltonian Neural Nets [16]. 

   If one curve is described by a set of representation points {(xi,yi), i = 1, 2, …, n} monotonic 

in coordinates xi, then HR matrices combined with the identity matrix IN are used to build the 

orthogonal and discrete Hurwitz - Radon Operator (OHR). For nodes (x1,y1), (x2,y2) OHR M 

of dimension N = 2 is constructed: 
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Matrix M in (1) is found as a solution of equation: 
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For nodes (x1,y1), (x2,y2), (x3,y3), (x4,y4), monotonic in xi, OHR of dimension N = 4 is 

constructed: 
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where 

443322110 yxyxyxyxu  ,   
344312211 yxyxyxyxu  , 

241342312 yxyxyxyxu  ,  
142332413 yxyxyxyxu  . 

Matrix M in (3) is found as a solution of equation: 
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For nodes (x1,y1), (x2,y2), …, (x8,y8), monotonic in xi, OHR of dimension N = 8 is built [17] 

similarly as (1) or (3). Note that OHR operators M (1)-(3) satisfy the condition of 

interpolation 

                                                                   Mx = y                                                                  (5) 

for x = (x1,x2…,xN)
T
  R

N
, x  0, y = (y1,y2…,yN)

T
  R

N
, N = 2, 4 or 8. 

   If one curve is described by a set of nodes {(xi,yi), i = 1, 2, …, n} monotonic in coordinates 

yi, then HR matrices combined with the identity matrix IN are used to build the orthogonal and 

discrete reverse Hurwitz - Radon Operator (reverse OHR) 

M
-1

. If matrix M in (1)-(3) is described as: 
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where D with elements u1, …, uN-1, then reverse OHR M
-1 

is given by: 
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Note that reverse OHR operator (6) satisfies the condition of interpolation    

                                                           M
-1
y = x                                                                        (7) 

for x = (x1,x2…,xN)
T
  R

N
, y = (y1,y2…,yN)

T
  R

N
, y  0 , N = 2, 4 or 8. 

 

3.2.  Method of Hurwitz-Radon Matrices 

 

Key question looks as follows: how can we compute coordinates of points settled between the 

interpolation nodes? On a segment of a line every number “c” situated between “a” and “b” is 

described by a linear (convex) combination c=  a+(1 - )  b for 

                                                          
ab

cb




  [0;1].                                                             (8) 

   When the nodes are monotonic in coordinates xi, the average OHR operator M2 of 

dimension N = 2, 4 or 8 is constructed as follows: 

                                                          
102 )1( MMM                                                         (9) 



with the operator M0 built (1)-(3) by “odd” nodes (x1=a,y1), (x3,y3), …, (x2N-1,y2N-1) and M1 

built (1)-(3) by “even” nodes (x2=b,y2), (x4,y4), …, (x2N,y2N). Having the operator M2 for 

coordinates xi < xi+1 it is possible to reconstruct the second coordinates of points (x,y) in terms 

of the vector C defined with 

                                               ci = x2i-1+ (1-)x2i     ,    i = 1, 2,…, N                                 (10) 

as C = [c1, c2,…, cN]
T
. The required formula is similar to (5): 

                                                       CMCY  2)(                                                                      (11) 

in which components of vector Y(C) give the second coordinate of the points (x,y) 

corresponding to the first coordinate, given in terms of components of the vector C. 

   On the other hand, having the operator M2
-1

 for coordinates yi < yi+1 it is possible to 

reconstruct the first coordinates of points (x,y):  
1
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   Contour of the object is constructed with several number of curves. Calculation of unknown 

coordinates for contour points using (8)-(12) is called by author the method of Hurwitz - 

Radon Matrices (MHR). Here is the application of MHR method for functions f(x) = 1/x 

(nodes as Fig.2) and f(x) = 1/(1+25x
2
) with five nodes equidistance in first coordinate: xi = -1, 

-0.5, 0, 0.5, 1. 

a)      b)    
Fig. 3. Twenty six interpolated points of functions f(x)=1/x (a) and f(x) = 1/(1+25x

2
) (b) using  MHR 

method with 5 nodes 

 

MHR interpolation for function f(x) = 1/x gives better result then Lagrange interpolation 

(Fig.2). The same can be said for function f(x) = 1/(1+25x
2
). 

 

4. Shape Coefficients 

Shape coefficients are the parameters that characterizing and describing the shape of the 

object. Most of the shape coefficients are calculated using area of the object S and length of 

the contour L. For example [18]: 
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7. coefficient of Haralick RH 
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8. coefficient of compactness RC 

p
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9. coefficient Rmin/Rmax 

max

min

R

R
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where: 

Rmin – minimal distance of object contour to center of gravity, 

Rmax – maximal distance of object contour to center of gravity, 

Sp – minimal area of the rectangle covering the object, 

Lh – maximal horizontal diameter of the object (horizontal Feret’s diameter), 

Lv – maximal vertical diameter of the object (vertical Feret’s diameter), 

ri – distance of object pixel to center of gravity, 

i – number of object pixel, 

li – minimal distance of object pixel to object contour, 

di – distance of contour pixel to center of gravity, 

c – number of contour pixels.  

 

4.1 Length of the contour 

 

The contour is divided into m curves C1, C2, ... Cm. Having nodes (x1,y1), (x2,y2),…, (xn,yn) for 

each Ci in MHR method [19], it is possible to compute as many curve points as we want for 

any parameter   [0;1] (8). Assume that k is the number of reconstructed points p together 

with n nodes (k = n + p). So a curve Ci consists of k points that are indexed (x1’,y1’), 

(x2’,y2’),…, (xk’,yk’), where (x1’,y1’) = (x1,y1) and (xk’,yk’) = (xn,yn). The length of a curve Ci, 

consists of k points, is estimated: 
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Length of whole contour L is computed: 

                                                       L = d(C1) + d(C2) + … + d(Cm).                                      (14) 

Two examples of estimation a length of the curve via MHR method [20]. 

Example 1 The graph of function f(x) = 1/(1+5x
2
) reconstructed via MHR method (8)-(11) for 

N = 2 with nodes x = -1.0, -0.5, 0, 0.5, 1.0 (n = 5) and calculated points p = 36 looks as 

follows (the curve is described by k = 41 points): 



 
Fig. 4. The curve y = 1/(1+5x

2
) reconstructed by MHR method for five nodes and 36 calculated points 

 

Length of the curve characterized on Fig.4 and estimated by (13) is d(C) = 2.643 whereas 

precise length is d(f) = 2.679. There is no Runge phenomenon on Fig.4 and MHR method 

preserves the symmetry of the curve. 

Example 2 The graph of function f(x) = 2/x reconstructed via MHR (8)-(11) for N = 2 with 

nodes x = 0.4, 0.7, 1.0, 1.3, 1.6 (n = 5) and calculated points p = 36 looks as follows (the 

curve is described by k = 41 points): 

 
Fig. 5. The curve y = 2/x reconstructed by MHR method for five nodes and 36 calculated points 

 

Length of the curve characterized on Fig.5 and estimated by (13) is d(C) = 4.050 whereas 

precise length is d(f) = 4.045. 

 

4.2 Area of the object 

 

Area of the object can be divided horizontally or vertically (Fig.6) into the set of l polygons: 

triangles and quadrangles (squares, rectangles, trapezoids, rhombuses, parallelograms). 

 
Fig. 6. The object area consists of polygons 

 

The coordinates of corners for each polygon Pi are calculated by MHR method [21] and then 

it is easy to estimate the area of Pi. For example P1 as a trapezoid with the corners (x1,y1), 

(x1,y2), (x2,y3), (x2,y4): 

 
Fig. 7. Trapezoid as a part of the object 

 

Area of a trapezoid P1 is computed: 
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It is easy to compute the area of other polygons with given corners. For example a triangle P2 

with sides a, b, c and p = (a+b+c)/2: 
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Estimation of the object area S is given by a formula: 
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Feret’s diameters (horizontal Lh and vertical Lv) are also possible to calculate having a contour 

of the object. Contour points, computed by MHR method [22], are applied in shape 

coefficients. 

 

5. Conclusions 

The method of Hurwitz-Radon Matrices leads to contour interpolation and shape 

reconstruction depending on the number and location of contour points. No characteristic 

features of the curve, significant for classical polynomial interpolations or Bezier curves and 

NURBS, are important in MHR method. MHR gives the possibility of reconstruction a curve 

consists of several parts, for example closed curve (contour). The only condition is to have a 

set of nodes for each part of a curve or contour according to assumptions in MHR method. 

Any point of the contour can be calculated by MHR method and then parameters of the object 

used in shape coefficients are computed. Contour representation and curve reconstruction by 

MHR method is connected with possibility of changing the nodes coordinates and 

reconstruction of new curve or contour for new set of nodes, no matter what shape of curve or 

contour is to be reconstructed. Main features of MHR method are: accuracy of shape 

reconstruction depending on number of  nodes and method of choosing nodes; reconstruction 

of curve consists of L points is connected with the computational cost of rank O(L) [19]; 

MHR method is dealing with local operators: average OHR operators are built by successive 

4, 8 or 16 nodes, what is connected with smaller computational costs then using all nodes; 

MHR is not an affine interpolation [23]. 

     Future works are connected with: geometrical transformations of contour (translations, 

rotations, scaling)- only nodes are transformed and new curve (for example contour of the 

object) for new nodes is reconstructed, possibility to apply MHR method to three-dimensional 

curves and connection MHR method with object recognition [24]. 
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Abstract 
 

Computer vision needs suitable methods of shape representation and contour reconstruction. 

Method of Hurwitz-Radon Matrices (MHR), invented and described by the author, is applied 

in reconstruction and interpolation of curves in the plane. Reconstructed curves represent the 

shape and contour of the object. Any point of the contour can be calculated by MHR method 

and then parameters of the object, used in shape coefficients, are computed: length of the 

contour, area of the object, Feret’s diameters. Proposed method is based on a family of 

Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns 

composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), built from these 

matrices, is described. The shape is represented by the set of nodes. It is shown how to create 

the orthogonal and discrete OHR and how to use it in a process of shape representation and 

reconstruction. MHR method is interpolating the curve point by point without using any 

formula or function. 

 

Streszczenie 

 

Komputerowa wizja wymaga odpowiednich metod reprezentacji kształtu obiektu i 
rekonstrukcji jego konturu. Jedna z takich metod, opracowana i nazwana przez autora 
metodą Macierzy Hurwitza-Radona (MHR), może zostać użyta w interpolacji i rekonstrukcji 
krzywych płaskich. Odtworzone krzywe przedstawiają kształt i kontur obiektu. Dzięki 
metodzie MHR możliwe jest wyznaczenie dowolnego punktu konturu i obliczenie 
parametrów używanych we współczynnikach kształtu: długość konturu, powierzchnia 
obiektu, średnice Fereta. Metoda ta jest oparta na rodzinie macierzy Hurwitza-Radona (HR). 
Macierze HR są skośno-symetryczne i składają się z kolumn tworzących ortogonalne wektory. 
W pracy pokazano jak konstruować Operator Hurwitza-Radona (OHR) oraz jak wykorzystać 
go w procesie interpolacji konturu. Kształt obiektu opisany jest za pomocą punktów 
węzłowych. Metoda MHR rekonstruuje kontur i kształt obiektu punkt po punkcie, bez użycia 
wzoru opisującego krzywą. 

  


