PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatiotemporal detection of abrupt change in trends of rainfall and dry and wet periods at different time scales: The case of the Medjerda basin in northeast Algeria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates possible rainfall and drought trends using data from 38 rainfall stations in the Medjerda basin (northeast of Algeria) over 54 years (1965–2018). Drought-related data were calculated with the Standardized precipitation index (SPI). The Mann–Kendall test was used to find positive or negative precipitation trends. The magnitude of these trends was calculated using Sen’s slope method. According to the analysis, a decrease during the spring precipitation season was observed. Furthermore, the authors found the maximum increasing (decreasing) precipitation magnitude to be 2.14 mm/season (− 4.41 mm/season) in winter (spring). In addition, the magnitude of the precipitation trend per year ranged from − 6.26 to 2.54 mm/year, with an average reduction of 39% for the entire basin. From the outcomes of drought trend analysis, it can be inferred that for a short-time scale, the innovative trend analysis method exhibited a negative trend for the minimum and maximum SPI values. Drought severity was found to have increased during severe and extreme wet episodes, directly affecting Algeria’s frequently drought-affected agricultural regions, such as the Merdja plain and the irrigated perimeters of Sedrata and Zouabi. Considering the long-time scales, an increase was detected in drought severity and a decline during severe and extreme wet episodes. These findings show that the southeastern and central parts of the Medjerda basin’s long-term water resources have been severely affected, which negatively impacts the newly-constructed Ouldjet Mellegue dam in Tébessa province.
Czasopismo
Rocznik
Strony
2497--2516
Opis fizyczny
Bibliogr. 89 poz., rys., tab.
Twórcy
  • Department of Civil Engineering and Hydraulic, Institute of Sciences and Technology, Abdelhafid Boussouf University Center, Mila, Algeria
  • Department of Civil Engineering, Faculty of Engineering and Architecture, Erzincan Binali Yıldırım University, Erzincan, Turkey
Bibliografia
  • 1. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications Inc., New York
  • 2. Achour K, Meddi M, Zeroual A et al (2020) Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J Earth Syst Sci 129:42. https://doi.org/10.1007/s12040-019-1306-3
  • 3. Angelidis P, Maris F, Kotsovinos N, Hrissanthou V (2012) Computation of drought index SPI with alternative distribution functions. Water Resour Manag 26:2453–2473. https://doi.org/10.1007/s11269-012-0026-0
  • 4. Belarbi H, Touaibia B, Boumechra N, Amiar S, Baghli N (2017) Drought and modification of the rainfall−runoff relation: case of Wadi Sebdou basin (western Algeria). Hydrol Sci J 62:124–136. https://doi.org/10.1080/02626667.2015.1112394
  • 5. Berhail S (2019) The impact of climate change on groundwater resources in northwestern Algeria. Arab J Geosci 12:770. https://doi.org/10.1007/s12517-019-4776-3
  • 6. Berhail S (2022) Performance evaluation of an automated method for hydrograph separation in Mellah catchment, Northeastern Algeria. Int J Hydrol Sci Technol 14:251–267. https://doi.org/10.1504/IJHST.2022.125663
  • 7. Berhail S, Ouerdachi L, Keblouti M (2015) Combination of two evolutionary methods for groundwater recharges estimation in semiarid regions, Northeastern Algeria. Int J Water 9:286–297
  • 8. Berhail S, Tourki M, Merrouche I, Bendekiche H (2021) Geostatistical assessment of meteorological drought in the context of climate change: case of the Macta basin (Northwest of Algeria). Model Earth Syst Environ 8:81–101. https://doi.org/10.1007/s40808-020-01055-7
  • 9. Bouabdelli S, Meddi M, Zeroual A, Alkama R (2020) Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. J Water Clim Change 11(S1):164–188. https://doi.org/10.2166/wcc.2020.207
  • 10. Bouarfa S, Farhi Y, Youb O, Boultf M, Djoudi W, Faci M (2022) Spatio-temporal assessment of drought in the semiarid region of Algerian steppe through index and remote sensing. J Water Land Dev 53:210–218. https://doi.org/10.24425/jwld.2022.140799
  • 11. Boulmaiz T, Boutaghane H, Abida H, Saber M, Kantoush SA, Tramblay Y (2022b) Exploring the spatio-temporal variability of precipitation over the Medjerda Transboundary Basin in North Africa. Water 14:423. https://doi.org/10.3390/w14030423
  • 12. Boulmaiz T, Boutaghane H, Abida H, Saber M, Kantoush SA, and Tramblay Y (2022a) Analysis of rainfall trend and the impact of teleconnection patterns on its variability: case of Medjerda Transboundary Watershed (No. IAHS2022a-513). Copernicus Meetings
  • 13. Caloiero T (2018) SPI trend analysis of New Zealand applying the ITA technique. Geosciences 8:101. https://doi.org/10.3390/geosciences8030101
  • 14. Caloiero T, Caloiero P, Frustaci F (2018) Long-term precipitation trend analysis in Europe and in the Mediterranean basin. Water Environ J 32:433–445. https://doi.org/10.1111/wej.12346
  • 15. Calow RC, MacDonald AM, Nicol AL, Robins NS (2010) Ground water security and drought in Africa: linking availability, access, and demand. Groundwater 48:246–256. https://doi.org/10.1111/j.1745-6584.2009.00558.x
  • 16. Charif SB, Benmamar S, Dehni A (2021) Study and analysis of the streamfow decline in North Algeria. J Appl Water Eng Res 9:20–44. https://doi.org/10.1080/23249676.2020.1831974
  • 17. Derdous O, Bouamrane A, Mrad D (2021) Spatiotemporal analysis of meteorological drought in a Mediterranean dry land: case of the Cheliff basin–Algeria. Model Earth Syst Environ 7:135–143. https://doi.org/10.1007/s40808-020-00951-2
  • 18. Djerbouai S, Souag-Gamane D (2016) Drought forecasting using neural networks, wavelet neural networks, and stochastic models: case of the Algerois Basin in North Algeria. Water Resour Manag 30:2445–2464. https://doi.org/10.1007/s11269-016-1298-6
  • 19. El Kenawy AM, McCabe MF, Vicente-Serrano SM, López-Moreno JI, Robaa SM (2016) Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013. Cuadernos De Investigación Geográfica 42:145–166. https://doi.org/10.18172/cig.2931
  • 20. Elouissi A, Benzater B, Dabanli I, Habi M, Harizia A, Hamimed A (2021) Drought investigation and trend assessment in Macta watershed (Algeria) by SPI and ITA methodology. Arab J Geosci 14:1329. https://doi.org/10.1007/s12517-021-07670-7
  • 21. FAO (2015) AQUASTAT Tunisia fact sheet. https://www.fao.org/aquastat/en/countries-and-basins/country-profiles/country/TUN Accessed on 18 March 2023.
  • 22. Gader K, Gara A, Vanclooster M, Khlifi S, Slimani M (2020) Drought assessment in a south Mediterranean transboundary catchment. Hydrol Sci J 65:1300–1315. https://doi.org/10.1080/02626667.2020.1747621
  • 23. Geremew GM, Mini S, Abegaz A (2020) Spatiotemporal variability and trends in rainfall extremes in Enebsie Sar Midir district, Northwest Ethiopia. Mod Earth Syst Environ 6:1177–1187
  • 24. Ghenim AN, Megnounif A, Seddini A, Terfous A (2010) Fluctuations hydropluviométriques du bassin-versant de l’oued Tafna à Béni Bahdel (Nord-Ouest algérien). Sécheresse 21:115–120
  • 25. Habibi B, Meddi M, Torfs PJ, Remaoun M, Van Lanen HA (2018) Characterisation and prediction of meteorological drought using stochastic models in the semiarid Chéliff-Zahrez basin (Algeria). J Hydrol Reg Stud 16:15–31. https://doi.org/10.1016/j.ejrh.2018.02.005
  • 26. Hallouz F, Meddi M, Mahe G (2013) Analyse des ruptures dans les séries pluviométriques dans le bassin de l’oued Mina (Nord-Ouest d’Algérie). Rev Sci Eau 26:33–38
  • 27. Hallouz F, Meddi M, Mahé G et al (2020) Analysis of meteorological drought sequences at various timescales in semiarid climate: case of the Cheliff watershed (northwest of Algeria). Arab J Geosci 13:280. https://doi.org/10.1007/s12517-020-5256-5
  • 28. Hayes M, Svoboda M, Wall N, Widhalm M (2011) The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bull Am Meteorol Soc 92:485–488
  • 29. Hussain K, Shahab M (2021) An investigation standardized precipitation index trend in arid and semiarid region of pakistan applying the innovative trend analysis (ITA) technique. In: Water resources in arid lands: management and sustainability. advances in science, technology and innovation. Springer, Cham, pp 111–120
  • 30. Ionita M, Tallaksen LM, Kingston DG, Stagge JH, Laaha G, Van LHAJ, Scholz P, Chelcea SM, Haslinger K (2017) The European 2015 drought from a climatological perspective. Hydrol Earth Syst Sci 21:1397–1419
  • 31. IPCC Climate Change (2021) The physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press
  • 32. Jemai S, Ellouze M, Abida H (2017) Variability of precipitation in arid climates using the wavelet approach: Case study of watershed of Gabes in southeast Tunisia. Atmosphere 8:178. https://doi.org/10.3390/atmos8090178
  • 33. Jonathan KH, Raju PS (2017) Analysis of rainfall pattern and temperature variations in three regions of sultanate of Oman. Int J Civ Eng Technol 8:173–181
  • 34. Kadir M, Fehri R, Souag D, Vanclooster M (2020) Exploring causes of streamflow alteration in the Medjerda river Algeria. J Hydrol Reg Stud 32:100750. https://doi.org/10.1016/j.ejrh.2020.100750
  • 35. Katipoğlu OM (2022a) Analyzing the trend and change point in various meteorological variables in Bursa with various statistical and graphical methods. Theoret Appl Climatol 150:1295–1320. https://doi.org/10.1007/s00704-022-04231-0
  • 36. Katipoğlu OM (2022) Analysis of spatial variation of temperature trends in the semiarid Euphrates basin using statistical approaches. Acta Geophys. https://doi.org/10.1007/s11600-022-00819-2
  • 37. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London
  • 38. Khedimallah A, Meddi M, Mahé G (2020) Characterization of the interannual variability of precipitation and runoff in the Cheliff and Medjerda basins (Algeria). J Earth Syst Sci 129:134. https://doi.org/10.1007/s12040-020-01385-1
  • 39. Khomsi K, Mahe G, Sinan M, Snoussi M (2013) Hydro-climatic variability in two Moroccan watersheds: A comparative analysis of temperature, rain and flow regimes. In: Boegh E, Blyth E, Hannah DM, Hisdal H, Kunstmann H, Su B, Yilmaz KK (eds) Climate and land surface changes in hydrology, vol 359. IAHS-AISH Publishing, pp 183–190.
  • 40. Knippertz P, Ulbrich U, Marques F, Corte-Real J (2003) Decadal changes in the link between El Niño and springtime North Atlantic oscillation and European-North African rainfall. Int J Climatol 23:1293–1311. https://doi.org/10.1002/joc.944
  • 41. Krishnakumar KN, Prasada Rao GSLHV, Gopakumar CS (2009) Rainfall trends in twentieth century over Kerala, India. Atmos Environ 43:1940–1944. https://doi.org/10.1016/j.atmosenv.2008.12.053
  • 42. Kumar M, Denis D, Suryavanshi S (2016) Long-term climatic trend analysis of Giridih district, Jharkhand (India) using statistical approach. Model Earth Syst Environ 2:116. https://doi.org/10.1007/s40808-016-0162-2
  • 43. Laborde JP, Gourbesville P, Assaba M, Dammak A, Belhouli L (2010) Climate evolution and possible effects on surface water resources of North Algeria. Curr. Sci. 98:1056–1062
  • 44. López-Moreno JI, Vecente-Serrano SM, Angulo-Martinez M, Beguería S, Kenawy A (2010) Trends in daily precipitation on the northeastern Iberian Peninsula, 1955–2006. Int J Climatol 30:1026–1041. https://doi.org/10.1002/joc.1945
  • 45. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187
  • 46. Mathbout S, Lopez- Bustins JA, Royé D, Martin-Vide J, Benhamrouche A (2019) Spatiotemporal variability of daily precipitation concentration and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. Int J Climatol 40:1435–1455. https://doi.org/10.1002/joc.6278
  • 47. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proc Conf Appl Climatol 17:179–183
  • 48. Meddi M, Eslamian S (2021) Uncertainties in rainfall and water resources in Maghreb countries under climate change. In: Leal Filho W, Oguge N, Ayal D, Adeleke L, da Silva I (eds) African handbook of climate change adaptation. Springer International Publishing, Berlin, pp 1–37
  • 49. Meddi M, Assani AA, Meddi H (2010) Temporal variability of annual rainfall in the Macta and Tafna catchments, Northwestern Algeria. Water Res Manag 24:3817–3833. https://doi.org/10.1007/s11269-010-9635-7
  • 50. Meddi H, Meddi M, Assani AA (2014) Study of drought in seven algerian plains. Arab J Sci Eng 39:339–359. https://doi.org/10.1007/s13369-013-0827-3
  • 51. Mekonen AA, Berlie AB, Ferede MB (2020) Spatial and temporal drought incidence analysis in the northeastern highlands of Ethiopia. Geoenviron Disasters 7:1–17. https://doi.org/10.1186/s40677-020-0146-4
  • 52. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012
  • 53. Mohammed S, Alsafadi K, Enaruvbe GO, Bashir B, Elbeltagi A, Széles A et al (2022) Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary. Sci Rep 12:1–19. https://doi.org/10.1038/s41598-022-12799-w
  • 54. Mrad D, Djebbar Y, Hammar Y (2018) Analysis of trend rainfall: case of Northeastern Algeria. J Water Land Dev 36:1429–7426. https://doi.org/10.2478/jwld-2018-0011
  • 55. Mrad D, Dairi S, Boukhari S, Djebbar Y (2019) Applied multivariate analysis on annual rainfall in the northeast of Algeria. J Wat Clim Chang 11:1165–1176. https://doi.org/10.2166/wcc.2019.272
  • 56. Nguyen HM, Ouillon S, Vu VD (2022) Sea level variation and trend analysis by comparing Mann-Mendall test and innovative trend analysis in Front of the Red River Delta, Vietnam (1961–2020). Water 14:1709. https://doi.org/10.3390/w14111709
  • 57. Nouaceur N, Benoit L, Imen T (2013) Changements climatiques au Maghreb : vers des conditions plus humides et plus chaudes sur le littoral algérien ? Géogr Phys Environ 7:307–323. https://doi.org/10.4000/physio-geo.3686
  • 58. Oliver RL (1981) Measurement and evaluation of satisfaction processes in retail settings. J Retailing
  • 59. Potop V, Boroneant C, Mozny M, Stepanek P, Skalak P (2014) Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theor Appl Climato 115:563–581. https://doi.org/10.1007/s00704-013-0908-y
  • 60. Rachid BH (2011) Contribution à la gestion de l’eau dans la ville d’Oran. Oran. https://catalog.ihsn.org/index.php/citations/82935. Accessed on 18 March 2023
  • 61. Rajosoa AS, Abdelbaki C, Mourad KA (2021) Water assessment in transboundary river basins: the case of the Medjerda River Basin. Sustain Water Resour Manag 7(88):2–13. https://doi.org/10.1007/s40899-021-00566-0
  • 62. Rajosoa AS, Abdelbaki C, Mourad KA (2022) Assessing the impact of climate change on the Medjerda River Basin. Arab J Geosci 15:1052. https://doi.org/10.1007/s12517-022-10288-y
  • 63. Rodrigo FS, Trigo RM (2007) Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. Int J Climatol 27:513–529. https://doi.org/10.1002/joc.1409
  • 64. Salameh T (2008) Modélisation multi-échelles de la circulation atmosphérique hivernale sur le bassin méditerranéen: rôle des interactions d’échelles. Thèse de Doctorat. École polytechnique France, 152p
  • 65. Sebbar A, Badri W, Fougrach H, Hsaine M, Saloui A (2011) Variabilité du régime pluviométrique au Maroc septentrional (1935–2004). Secheresse 22:139–148
  • 66. Şen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.1080/01621459.1968.10480934
  • 67. Şen Z (2012) Innovative trend analysis methodology. J Hydrol Eng 17:1042–1046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556
  • 68. Şen Z (2014) Trend identification simulation and application. J Hydrol Eng 19:635–642. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000811
  • 69. Sharma A, Goyal MK (2020) Assessment of drought trend and variability in India using wavelet transform. Hydrol Sci J 65:1539–1554. https://doi.org/10.1080/02626667.2020.1754422
  • 70. Shifteh Somee B, Ezani A, Tabari H (2012) Spatiotemporal trends and change point of precipitation in Iran. Atmos Res 113:1–12. https://doi.org/10.1016/j.atmosres.2012.04.016
  • 71. Singla S, Mahé G, Dieulin C, Driouech F, Milano M, El Guelai F Z and Ardoin-Bardin S (2010) Evolution des relations pluie-débit sur des bassins versants du Maroc, vol 340. IAHS Publishing, pp 679–687
  • 72. Swed FS, Eisenhart C (1943) Tables for testing randomness of grouping in a sequence of alternatives. Ann Math Stat 14(1):66–87
  • 73. Taibi S, Meddi M, Mahé G, Assani A (2017) Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall. Theor Appl Climatol 127:241–257. https://doi.org/10.1007/s00704-015-1626-4
  • 74. Taïbi S, Meddi M, Mahé G (2019) Seasonal rainfall variability in the southern Mediterranean border: observations, regional model simulations and future climate projections. Atmosfera 32:39–54. https://doi.org/10.20937/atm.2019.32.01.04
  • 75. Taibi S, Souag D (2011) Regionalization of drought in Northern Algeria using a standardized precipitation index (1936–2010). In: Ferrari E, Versace P (eds) From prediction to prevention of hydrological risk inMediterranean countries, 4th international workshop on hydrological extrêmes MEDFRIEND group, University of Calabria; EdiBios, Cosenza, Italia, pp 169–182
  • 76. Taibi S, Meddi M, Mahé G, Assani A (2014) Variability of annual and extreme rainfall over Northern Algeria and relationship with teleconnections patterns. In: Proceedings of the Mediterranean meeting on “monitoring, modelling and early warning of extreme. Events triggered by heavy rainfalls” PON 01_01503-MED-FRIEND project. University of Calabria, Cosenza (Italy)
  • 77. Theil H (1950) A rank invariant method of linear and polynomial regression analysis, part 3. Nederl Akad Wetensch Proc 53:1397–1412
  • 78. Thom HCS (1958) A note on the gamma distribution. Mon Weather Rev 86:117–122. https://doi.org/10.1175/1520-0493(1958)086%3c0117:ANOTGD%3e2.0.CO;2
  • 79. Toros H., (1993), Trend analysis in Turkish climate from climatological series. Master Thesis, Istanbul Technical University, Institute of Science and Technology, Istanbul
  • 80. Tramblay Y, El Adlouni S, Servat E (2013) Trends and variability in extreme precipitation indices over Maghreb countries. Nat Hazards Earth Syst Sci 13(12):3235–3248. https://doi.org/10.5194/nhess-13-3235-2013
  • 81. Van Loon AF, Stahl K, Di Baldassarre G, Clark J, Rangecroft S et al (2016) Drought in a human-modified world: Reframing drought definitions, understanding, and analysis approaches. Hydrol Earth Syst Sci 20:3631–3650. https://doi.org/10.5194/hess-20-3631-2016
  • 82. Viste E, Korecha D, Sorteberg A (2013) Recent drought and precipitation tendencies in Ethiopia. Theor Appl Climatol 112:535–551. https://doi.org/10.1007/s00704-012-0746-3
  • 83. Wang G (2005) Agricultural drought in a future climate: Results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753. https://doi.org/10.1007/s00382-005-0057-9
  • 84. Wang L, Chen W, Zhou W, Chan JCL, Barriopedro D, Huang R (2010) Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int J Climatol 30:153–158. https://doi.org/10.1002/joc.1876
  • 85. Wu H, Qian H (2017) Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int J Climatol 37:2582–2592. https://doi.org/10.1002/joc.4866
  • 86. Xu CY, Widén E, Halldin S (2005) Modelling hydrological consequences of climate change—Progress and challenges. Adv Atmos Sci 22:789–797. https://doi.org/10.1007/BF02918679
  • 87. Xu K, Milliman JD, Xu H (2010) Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. Glob Planet Change 73:219–223. https://doi.org/10.1016/j.gloplacha.2010.07.002
  • 88. Zamrane Z, Turki I, Laignel B, Mahé G, Laftouhi NE (2016) Characterization of the interannual variability of precipitation and streamflow in Tensift and Ksob basins (Morocco) and links with the NAO. Atmosphere 7:84. https://doi.org/10.3390/atmos7060084
  • 89. Zeroual A, Assani AA, Meddi M (2017) Combined analysis of temperature and rainfall variability as they relate to climate indices in northern Algeria over the 1972–2013 period. Hydrol Res 48:584–595. https://doi.org/10.2166/nh.2016.244
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37ccacbc-d8fe-40f5-b11a-28d85bd701e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.