PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of industrial wastewater in the sequential membrane bioreactor

Identyfikatory
Warianty tytułu
PL
Oczyszczanie ścieków przemysłowych w sekwencyjnym bioreaktorze membranowym
Języki publikacji
EN
Abstrakty
EN
The aim of presented study which was associated with modification of the various work cycle phases duration in the membrane bioreactor, was to reduce the concentration of phosphate phosphorus during the leachate co-treatment with dairy wastewater. The experimental set-up was comprised of the membrane bioreactor equipped with the immersed membrane module installed inside the reactor chamber, and the equalization tank. During the co-treatment experiment performance the excessive activated sludge was constantly removed from the membrane bioreactor in order to keep its concentration at 3.5 g/dm3. The load of the sludge with the contaminants was equal to 0.06 g COD/g d.m. d. The concentration of oxygen was equal to 3 mg/dm3. The share of the leachates in the co-treated mixture was equal to 10% vol. The membrane bioreactor worked as the sequential biological reactor, in two cycles per day. Duration of each phase was equal as follows: filling - 10 min - with concurrent mixing phase lasting for 4 h, aeration phase - 1 h, sedimentation - 30 min and removal from purified wastewater - 30 min. After 4 weeks under these conditions, the modification of the sequential membrane bioreactor’s work cycle was made. The duration of particular phases was shortened and two phases of denitrification and nitrification were introduced. Work cycle phases were modified as follows: filling - 10 min - with concurrent mixing phase lasting for 3 h, aeration phase - 4 h, mixing phase - 1 h, aeration phase - 3 h, sedimentation - 30 min and removal from purified wastewater - 30 min. Based on research, it was found that the change in membrane bioreactors’ work cycle affects the effectiveness of treated mixture. It was found that the applied modification of phases of the cycle of the MSBR did not affect the concentration of organic compounds and the no significant changes in the concentration of ammonium and nitrate nitrogen in the effluent from the bioreactor were observed, however, the total nitrogen removal efficiency increased by 50%. Alteration of MSBR reactor particular phases duration caused reduction of concentration of P-PO43 from 4.7 to 2.9 mg/dm3.
Rocznik
Strony
285--295
Opis fizyczny
Bibliogr. 19 poz., rys., wykr., tab.
Twórcy
  • Division of Environmental Chemistry and Membrane Processes, Institute of Water and Wastewater Treatment, Silesian University of Technology, ul. S. Konarskiego 18, 44-100 Gliwice, Poland, phone +48 32 237 15 26
  • Division of Environmental Chemistry and Membrane Processes, Institute of Water and Wastewater Treatment, Silesian University of Technology, ul. S. Konarskiego 18, 44-100 Gliwice, Poland, phone +48 32 237 15 26
  • Division of Environmental Chemistry and Membrane Processes, Institute of Water and Wastewater Treatment, Silesian University of Technology, ul. S. Konarskiego 18, 44-100 Gliwice, Poland, phone +48 32 237 15 26
Bibliografia
  • [1] Sanguanpak S, Chiemchaisri C, Chiemchaisri W, Yamamoto K. Influence of operating pH of biodegradation performance and fouling propensity in membrane bioreactors for landfill leachate treatment. Int Biodeter Biodegr. 2015;102:64-72. DOI: 10.1016/j.ibiod.2015.03.024.
  • [2] Liu Z, Wu W, Shi P, Guo J, Cheng J. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Manage. 2015;41:111-118. DOI: 10.1016/j.wasman.2015.03.044.
  • [3] Directive of the Minister of Construction of 14 July 2006 (J. of Laws No.136 item 964) on the manner of performing the obligation of industrial sewage supplier. http://isip.sejm.gov.pl/DetailsServlet?id=WDU20061360964.
  • [4] Directive of the Minister of the Environment from 18th of November 2014 (of Laws. 2014, item 1800) changing the Directive on the conditions to be fulfilled during wastewater deposition to natural waters or soil. http://isap.sejm.gov.pl/DetailsServlet?id=WDU20140001800.
  • [5] Miao L, Wang K, Wang S, Zhu R, Li B, Peng Y, Weng D. Advanced nitrogen removal from landfill leachate using real-time controlled three-stage sequence batch reactor (SBR) system. Bioresource Technol. 2014;159:258-265. DOI: 10.1016/j.biortech.2014.02.058.
  • [6] Renoua S, Givaudana JG, Poulaina S, Dirassouyanb F, Moulinc P. Landfill leachate treatment: Review and opportunity. J Hazard Mater. 2008; 150:468-493. DOI: 10.1016/j.jhazmat.2007.09.077.
  • [7] Wang K, Wang S, Zhu R, Miao L, Peng Y. Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR. Bioresource Technol. 2013;134:212-218. DOI: 10.1016/j.biortech.2013.02.017.
  • [8] Abood AR, Bao J, Du J, Zheng D, Luo Y. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration. Waste Manage. 2014;34(2):439-447. DOI: 10.1016/j.wasman.2013.10.025.
  • [9] Uygur A, Kargi F. Biological nutrient removal from pre-treated landfill leachate in sequencing batch reactor. J Environ Manage. 2004;71:9-14. DOI: 10.1016/j.jenvman.2004.01.002.
  • [10] Laitinen N, Luonsi A, Vilen J. Landfill leachate treatment with sequencing batch reactor and membrane bioreactor. Desalination. 2006;191:86-91. DOI: 10.1016/j.desal.2015.08.012.
  • [11] Sun H, Yang Q, Peng Y, Shi X, Wang S, Zhang S. Advanced landfill treatment using a two - stage UASB 0 SBR system at low temeprature. J Environ Sci. 2010;22(4):481-485. DOI: 10.1016/S1001-0742(09)60133-9.
  • [12] Menga F, Chae S, Drews A, Kraume M, Shin H, Yang F. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 2009;43:1489-1512. DOI: 10.1016/j.watres.2008.12.044.
  • [13] Semblante GU, Hai FI, Ngo HH, Guo W, You S, Price WE, et al. Sludge cycling between aerobic, anoxic and anaerobic regimes to reduce sludge production during wastewater treatment: Performance, mechanisms, and implications. Bioresource Technol. 2014;155:395-409. DOI:10.1016/j.biortech.2014.01.029.
  • [14] Mutamim NSA, Noor ZZ, Hassan MAA, Olsson G. Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination. 2012;305:1-11. DOI: 10.1016/j.desal.2012.07.033
  • [15] Cui AF, Muralidhara HS. Membrane Technology. Elsevier Ltd; 2010.
  • [16] Ahmed FN, Lan CQ. Treatment of landfill leachate using membrane bioreactors: A review. Desalination. 2012;287:41-54. DOI: 10.1016/j.desal.2011.12.012.
  • [17] Judd S. The status of membrane bioreactor technology. Trends Biotechnol. 2007;26(2):109-116. DOI: 10.1016/j.tibtech.2007.11.005.
  • [18] Kraume M, Drews A. Membrane bioreactors in wastewater treatment - Status and trends. Chem Eng Technol. 2010;33:1251-1259. DOI: 10.1002/ceat.201000104.
  • [19] Boonyaroj V, Chiemchaisri C, Chiemchaisri W, Theepharaksapan S, Yamamoto K. Toxic organic micro-pollutants removal mechanisms in long-term operated membrane bioreactor treating municipal solid waste leachate. Bioresource Technol. 2012;113:174-180. DOI: 10.1016/j.biortech.2011.12.127.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37cb8282-95de-41d5-92fa-2be9fd300ab6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.