PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative Foundry Technology and Material Using Fused Deposition Modeling and Polylactic Acid Material in Sand Casting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In sand casting, Fused Deposition Modeling (FDM) printing by using Poly Lactic Acid (PLA) filament is one of the innovative foundry technologies being adopted to substitute traditional pattern making. Several literatures have reported the influence of process parameters such as raster angle and print speed on some mechanical properties of FDM-printed, PLA-prototypes used in other applications. This study investigated the effects of interior fill, top solid layer, and layer height on the compressive strength of rapid patterns for sand casting application. Different values of the process parameters were used to print the pre-defined samples of the PLA-specimens and a compression test was performed on them. The coupled effects of the process parameters on compressive strength were investigated and the optimum values were determined. Interior fill of 36%, layer height of 0.21 mm and top solid layer of 4 were found to produce a FDM-printed, PLA-pattern that sustained a compaction pressure of 0.61 MPa. A simulation analysis with ANSYS® to compare failure modes of both experiment and model shows a similarity of buckling failure that occurred close to the base of each specimen.
Rocznik
Strony
65--71
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Covenant University, km 10 Idiroko Road, +234 Ota, Nigeria
autor
  • Covenant University, km 10 Idiroko Road, +234 Ota, Nigeria
autor
  • Covenant University, km 10 Idiroko Road, +234 Ota, Nigeria
autor
  • Covenant University, km 10 Idiroko Road, +234 Ota, Nigeria
autor
  • Covenant University, km 10 Idiroko Road, +234 Ota, Nigeria
autor
  • Covenant University, km 10 Idiroko Road, +234 Ota, Nigeria
autor
  • Covenant University, km 10 Idiroko Road, +234 Ota, Nigeria
Bibliografia
  • [1] Sulaiman, S. & Hamouda, A.M.S. (2004). Modelling and experimental investigation of solidification process in sand casting. J. Mater. Process. Technol. 155–156(1–3), 1723-1726.
  • [2] Budzik, G.. Markowski, T. & M. Sobolak, M. (2007). Hybrid foundry patterns of bevel gears. Archives of Foundry Engineering. 7(1), 131-134.
  • [3] Casalino, G., De Filippis, L.A.C. & Ludovico, A. (2005). “A technical note on the mechanical and physical characterization of selective laser sintered sand for rapid casting. J. Mater. Process. Technol. 166(1), 1-8.
  • [4] Aribo, S., Folorunso, D.O., Olaniran, O. & Oladele, I.O. (2009). Optimization the green compression strength and permeability of green sand made from epe silica sand. Int. J. Sci. Technol. 11(March), 101-126.
  • [5] Bawa, H.S. (2004). Manufacturing Process. Ranchi: Tata McGraw-Hill Publishing Company Limited.
  • [6] Alpha, A.A. (2013). Development of self-instructional manual for sand casting technology in the polytechnics in north central states of Nigeria. University of Nigeria, Nsuka.
  • [7] Youssef, H.M., El-Hofy, A.H., Ahmed, A.H. (2012). Manufacturing technology: materials, processes, and equipment. USA: Taylor and Francis Group, LLC.
  • [8] Anakhu, P.I., Bolu, C.A., Abioye, A.A. & Azeta, J. (2018). Fused deposition modeling printed patterns for sand casting in a nigerian foundry: A Review, IJAER. 13(7), 5113-5119.
  • [9] Hager, I., Golonka, A. & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction? Procedia Eng. 151, 292-299.
  • [10] Haratym R. & Tomasik, J. (2006). The influence of ceramic mould quality on surface geometry of Al investment casting, Arch. Foundry. 6(18), 237-242. (in Polish).
  • [11] Hartym, R. (2006). Dimensional Accuracy of investment casting for the burned pattern process. Arch. Foundry. 6(18), 231-236. (in Polish).
  • [12] Myszka, D., Modzelewski, J., Leśniewski, M. & Kerwiński, A. (2006). Introduction to titanium investment casting as implants use. Arch. Foundry. 6(18), 237-242. (in Polish).
  • [13] Gan, G.K.J. Chua, C.K. & Tong, M. (1999). Development of a new rapid prototyping interface. Comput. Ind. 39(1), 61-70.
  • [14] Zhang, Y., & Chou, Y. (2006). Three-dimensional finite element analysis simulations of the fused deposition modelling process. J. Eng. Manuf. 220, 1663-1671.
  • [15] Alafaghani, A., Qattawi, A., Alrawi, B. & Guzman, A. (2017). Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Procedia Manuf. 10, 791-803.
  • [16] Upadhyay, M., Sivarupan, T. & Mansori, M.El. (2017). 3D printing for rapid sand casting - A review. J. Manuf. Process. 29, 211-220.
  • [17] Bagsik A. & Schöoppner, V. (2011). Mechanical properties of fused deposition modeling parts manufactured with ULTEM 9085. Proc. ANTEC. (Vol. 2011), 1294-1298.
  • [18] Muellera, M. & Kochanb, D. (1999). Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Comput. Ind. 39(1), 47-53.
  • [19] Sonmez, F.O. & Hahn, H.T. (1998). Thermomechanical analysis of the laminated object manufacturing (LOM) process. Rapid Prototyp. J. 4(1), 26-36.
  • [20] Sanatgar, R.H., Campagne, C. & Nierstrasz, V. (2017). Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Appl. Surf. Sci. 403, 551-563.
  • [21] Ahn, A., Montero, S.H.M., Odell, D., Roundy, S. & Wright, P. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8(4), 248-257.
  • [22] Jin, Y., Li, H., He, Y. & Fu, J. (2015). Quantitative analysis of surface profile in fused deposition modeling. Addit. Manuf. 8, 142-148.
  • [23] Letcher, T. & Waytashek, M. (2014). Material property testing of 3D-printed specimen in pla on an entry-level 3D printer. Vol. 2A Adv. Manuf., February, V02AT02A014.
  • [24] Jin, Y., Wan, Y. & Liu, Z. (2017). Surface polish of PLA parts in FDM using dichloromethane vapour. 3rd Int. Conf. Mechatronics Mech. Eng. ICMME 2016, 95.
  • [25] Wool R.P. & O’Connor, K.M. (1981). A theory of crack healing in polymers. J. Appl. Phys. 52(5953).
  • [26] Yardimci, M.A. & Güçeri, S. (1996). Conceptual framework for the thermal process modelling of fused deposition. Rapid Prototyp. J. 2(2), 26-31.
  • [27] Zhang Y. & Chou, Y.K. (2006). Three-dimensional finite element analysis simulations of the fused deposition modelling process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220(10), 1663-1671.
  • [28] Oke A.O. & Omidiji, B.V. (2016). Investigation of Some Moulding Properties of a Nigerian Clay-Bonded Sand. 16(3), 71-76.
  • [29] Yunus A.C., Michael, A.B. (2011). Thermodynamics: An Engineering Approach. Singapore: McGraw-Hill, 2011.
  • [30] “Nigerian Foundries Ltd,” 2017.
  • [31] Herrmann, K.H., Gärtner, C., Güllmar, D., Krämer, M. & Reichenbach, J.R. (2014). 3D printing of MRI compatible components: Why every MRI research group should have a low-budget 3D printer. Med. Eng. Phys. 36(10), 1373-1380.
  • [32] Panda, B., Chandra Paul, S. & Jen Tan, M. (2017). Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater. Lett. 209, 146-149.
  • [33] Farah, S., Anderson, D.G. & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv. Drug Deliv. Rev. 107, 367-392.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
PL
Błąd w tytule - jest casing, powinno być casting
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37c9b4e2-895c-4eac-bd6c-001fc50bff01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.