PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of air content on thermal degradation of poly(ethylene terephthalate)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of these research is to investigate the air content on aging of poly-(ethylene terephthalate) (PET) preforms. Three air pressures were selected and in each pressure 5 samples were aged during 21 days in 80°C. Three samples were selected to be cut for determination of density with the use of hydrostatic method. Sample mass, Young modulus and surface roughness were measured for each sample before and after aging and differences between those parameters were presented as results. The changes of parameters may lead to a conclusion that mechanism of polymeric chain oxidation is dominant during thermal aging of PET. However aging process is not the fastest in atmospheric pressure but in lower air contents. This effect may be caused by greater evaporation of small molecule degradation products and shifting of reaction equilibrium in the direction of further decomposition.
Rocznik
Tom
Strony
183--193
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Katedra Technologii Materiałów i Maszyn, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski, ul. Oczapowskiego 11, 10-719 Olsztyn
Bibliografia
  • Aljoumaa K., Abboudi M. 2016. Physical ageing of polyethylene terephthalate under natural sunlight: correlation study between crystallinity and mechanical properties. Applied Physics Letters A, 122(6): 1-10.
  • Badía J.D., Vilaplana F., Karlsson S., Ribes-Greus A. 2009. Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled polyethylene terephthalate. Polymer Testing, 28(2): 169-175.
  • Dong J., Liu J., Li X., Liang Q., Xu X. 2020. Relationship between the Young’s Modulus and the crystallinity of cross-linked poly(ε-caprolactone) as an immobilization membrane for cancer radiotherapy. Global Challenges, 4: 2000008.
  • El-Toufaili F.A. 2006. Catalytic and mechanistic studies of polyethylene terephthalate synthesis. Ph.D. Dissertation, University of Berlin.
  • Itim B., Philip M. 2015. Effect of multiple extrusions and influence of PP contamination on the thermal characteristics of bottle grade recycled PET. Polymer Degradation and Stability, 117: 84-89.
  • Khemani K.C. 2000. A novel approach for studying the thermal degradation, and for estimating the rate of acetaldehyde generation by the chain scission mechanism in ethylene glycol based polyesters and copolyesters. Polymer Degradation and Stability, 67: 91-99.
  • Kong Y., Hay J.N. 2003 Multiple melting behaviour of poly(ethylene terephthalate). Polymer, 44: 623-633.
  • Liu Ch., Hu L., Lu Y., Zhao W. 2015. Evolution of the crystalline structure and cyclization with changing tension during the stabilization of polyacrylonitrile fibers. Journal of Applied Polymer Science, 132: 42182.
  • López-Fonseca R., Duque-Ingunza I., de Rivas B., Flores-Giraldo L., Gutiérrez-Ortiz J.I. 2011. Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chemical Engineering Journal, 168: 312-320.
  • Nait-Ali L.K., Colin X., Bergeret A. 2011. Kinetic analysis and modelling of PET macromolecular changes during its mechanical recycling by extrusion. Polymer Degradation and Stability, 96: 236-246.
  • Panowicz R., Konarzewski M., Durejko T., Szala M., Łazińska M., Czerwińska M., Prasuła P. 2021. Properties of polyethylene terephthalate (PET) after thermo-oxidative aging, Materials, 14: 833.
  • Pivsa-Art W., Fujii K., Nomura K., Aso Y., Ohara H., Yamane H. 2016. The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate). Journal of Applied Polymer Science, 133: 43044.
  • Sang T., Wallis C.J., Hill G., Britovsek G.J.P. 2020. Polyethylene terephthalate degradation under natural and accelerated weathering conditions. European Polymer Journal, 136: 109873.
  • Sato K., Sprengel W. 2012. Element-specific study of local segmental dynamics of polyethylene terephthalate upon physical aging. Journal of Chemical Physics, 137: 104906.
  • Sobków D., Czaja K. 2009. Badanie odporności materiałów na starzenie atmosferyczne. Czasopismo Techniczne. Mechanika, 106: 429-430.
  • Venkatachalam S., Nayak S.G., Labde J.V., Gharal P.R., Rao K., Kelkar A.K. 2012. Degradation and recyclability of poly (ethylene terephthalate). In: Polyester. Ed. H. Salach. InTech Open, London.
  • Xu M., Huang G., Feng S., McShane G.J., Stronge W.J. 2016. Static and dynamic properties of semi-crystalline polyethylene. Polymers, 8: 77.
  • Yang J., Xia Z., Kong F., Ma X. 2010. The effect of metal catalyst on the discoloration of poly(ethylene terephthalate) in thermo-oxidative degradation. Polymer Degradation and Stability, 95: 53-58.
  • Zaborowska M., Bernat K., Pszczółkowski B., Wojnowska-Baryła I., Kulikowska D. 2021. Challenges in sustainable degradability of bio-based and oxo-degradable packaging materials during anaerobic thermophilic treatment. Energies, 14: 4775.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37c8016d-51eb-4f88-b8e5-9beabd0c5a82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.