Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Most knowledge on the feeding ecology of fish has been based on the analyses of food remains from the alimentary tracks. This traditional method, however, only provides information about recently consumed food, and is burdened with a risk of incorrect assessment of the role of individual diet components due to the different rates of digestion. A method free from such limitations is the analysis of fatty acids. The objective of our study was to recognise the potential of fatty acid signatures in providing information on the diet and feeding habits of six fish species from the shallow brackish Vistula Lagoon, southern Baltic Sea (Anguilla anguilla, Abramis brama, Rutilus rutilus, Pelecus cultratus, Perca fluviatilis, Sander lucioperca). Multivariate statistical analyses of fatty acid signatures permitted relevant grouping of the fish according to species and their diet, as well as evidenced substantial ontogenetic changes in perch, roach, and bream. They might be caused by dietary changes but can also result from internal regulatory processes. The obtained results confirmed that fatty acids provide useful, time-integrated dietary information, contributing to expanding knowledge regarding the feeding ecology of fish in shallow coastal water ecosystems. They also pointed to the necessity of assessment of the invertebrates and fish's ability to perform endogenous synthesis of polyunsaturated fatty acids, particularly in research on benthic communities. To our best knowledge, this is the first attempt to investigate the feeding habits of fish and food-web relationships in the coastal waters of the Baltic Sea using fatty acids.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
567--582
Opis fizyczny
Bibliogr. 121 poz., rys., tab., wykr.
Twórcy
autor
- National Marine Fisheries Research Institute, Gdynia, Poland
autor
- National Marine Fisheries Research Institute, Gdynia, Poland
autor
- National Marine Fisheries Research Institute, Gdynia, Poland
Bibliografia
- 1. Airoldi, L., Beck, M.W., 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. 45, 345-405. https://doi.org/10.1201/9781420050943.ch7
- 2. Amundsen, P.A., Sanchez-Hernandez, J., 2019. Feeding studies take guts - critical review and recommendations of methods for stomach contents analysis in fish. J. Fish Biol. 95, 1364-1373. https://doi.org/10.1111/jfb.14151
- 3. Arrington, D.A., Winemiller, K.O., Loftus, W.F., Akin, S., 2002. How often do fishes "run on empty"? Ecology 83, 2145-2151. https://doi.org/10.2307/3072046
- 4. Baeza, R., Mazzeo, I., Vilchez, M.C., Gallego, V., Penaranda, D.S., Perez, L., Asturiano, J.F., 2015. Relationship between sperm quality parameters and the fatty acid composition of the muscle, liver and testis of European eel. Comp. Biochem. Phys. A 181, 79-86. https://doi.org/10.1016/j.cbpa.2014.11.022
- 5. Baker, R., Buckland, A., Sheaves, M., 2014. Fish gut content analysis: robust measures of diet composition. Fish Fish. 15, 170-177. https://doi.org/10.1111/faf.12026
- 6. Bell, M.V., Batty, R.S., Dick, J.R., Fretwell, K., Navarro, J.C., Sargent, J.R., 1995. Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.). Lipids 30, 443-449. https://doi.org/10.1007/bf02536303
- 7. Bell, M.V., Tocher, D.R., 2009. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions. In: Kainz, M., Brett, M., Arts, M. (Eds.), Lipids in Aquatic Ecosystems. Springer, New York, 211-236. https://doi.org/10.1007/978-0-387-89366-2_9
- 8. Bouchereau, J.L., Marques, C., Pereira, P., Guelorget, O., Vergne, Y., 2009. Food of the European eel Anguilla anguilla in the Mauguio lagoon (Mediterranean, France). Acta Adriat. 50, 159-170.
- 9. Bouguenec, V., Giani, N., 1989. Aquatic oligochaetes as prey of invertebrates and vertebrates: a review. Acta Oecol. Oecol. Appl. 10, 177-196.
- 10. Budge, S.M., Iverson, S.J., Koopman, H.N., 2006. Studying trophic ecology in marine ecosystems using fatty acids: A primer on analysis and interpretation. Mar. Mammal Sci. 22, 759-801. https://doi.org/10.1111/j.1748-7692.2006.00079.x
- 11. Budge, S.M., Parrish, C.C., McKenzie, C.H., 2001. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Mar. Chem. 76, 285-303. https://doi.org/10.1016/s0304-4203(01)00068-8
- 12. Buckland, A., Baker, R., Loneragan, N., Sheaves, M., 2017. Standardising fish stomach content analysis: the importance of prey condition. Fish. Res. 196, 126-140. https://doi.org/10.1016/j.fishres.2017.08.003
- 13. Casini, M., Hjelm, J., Molinero, J.C., Lovgren, J., Cardinale, M., Bartolino, V., Belgrano, A., Kornilovs, G., 2009. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proc. Natl. Acad. Sci. U. S. A. 106, 197-202. https://doi.org/10.1073/pnas.0806649105
- 14. Castro, L.F.C., Tocher, D.R., Monroig, O., 2016. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Prog. Lipid Res. 62, 25-40. https://doi.org/10.1016/j.plipres.2016.01.001
- 15. Chaguaceda, F., Eklov, P., Scharnweber, K., 2020. Regulation of fatty acid composition related to ontogenetic changes and niche differentiation of a common aquatic consumer. Oecologia 193, 325-336. https://doi.org/10.1007/s00442-020-04668-y
- 16. Clevestam, P.D., Ogonowski, M., Sjoberg, N.B., Wickstrom, H., 2011. Too short to spawn? Implications of small body size and swimming distance on successful migration and maturation of the European eel Anguilla anguilla. J. Fish Biol. 78, 1073-1089. https://doi.org/10.1111/j.1095-8649.2011.02920.x
- 17. Collie, J.S., Wood, A.D., Jeffries, H.P., 2008. Long-term shifts in the species composition of a coastal fish community. Can. J. Fish. Aquat. Sci. 65, 1352-1365. https://doi.org/10.1139/f08-048
- 18. Czesny, S.J., Rinchard, J., Hanson, S.D., Dettmers, J.M., Dabrowski, K., 2011. Fatty acid signatures of Lake Michigan prey fish and invertebrates: among-species differences and spatiotemporal variability. Can. J. Fish. Aquat. Sci. 68, 1211-1230. https://doi.org/10.1139/f2011-048
- 19. Dalsgaard, J., St John, M., Kattner, G., Muller-Navarra, D., Hagen, W., 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225-340. https://doi.org/10.1016/S0065-2881(03)46005-7
- 20. Demchuk, A.S., Uspenskiy, A.A., Golubkov, S.M., 2021. Abundance and feeding of fish in the coastal zone of the Neva Estuary, eastern Gulf of Finland. Boreal Environ. Res. 26, 1-16.
- 21. Dmitrieva, O.A., Semenova, A.S., 2012. Seasonal dynamics and trophic interactions of phytoplankton and zooplankton in the Vistula Lagoon of the Baltic Sea. Oceanology 52, 785-789. https://doi.org/10.1134/S0001437012060033
- 22. Dörner, H., Skov, C., Berg, S., Schulze, T., Beare, D.J., Van der Velde, G., 2009. Piscivory and trophic position of Anguilla anguilla in two lakes: importance of macrozoobenthos density. J. Fish Biol. 74, 2115-2131. https://doi.org/10.1111/j.1095-8649.2009.02289.x
- 23. dos Santos, J., Jobling, M., 1991. Gastric emptying in cod, Gadus morhua L.: emptying and retention of indigestible solids. J. Fish Biol. 38, 187-197. https://doi.org/10.1111/j.1095-8649.1991.tb03105.x
- 24. Elsdon, T.S., 2010. Unraveling diet and feeding histories of fish using fatty acids as natural tracers. J. Exp. Mar. Biol. Ecol. 386, 61-68. https://doi.org/10.1016/j.jembe.2010.02.004
- 25. Ezhova, E., Żmudziński, L., Maciejewska, K., 2005. Long-term trends in the macrozoobenthos of the Vistula Lagoon, southeastern Baltic Sea. Species composition and biomass distribution. Bull. Sea Fish. Inst. 1, 55-73.
- 26. Filuk, J., Żmudziński, L., 1965. Feeding of the Vistula Lagoon ichthyofauna. Rep. Sea Fish. Inst. 13 A, 43-55 (in Polish).
- 27. Folch, J., Lees, M., Stanley, G.H.S., 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
- 28. Futia, M.H., Colborne, S.F., Fisk, A.T., Gorsky, D., Johnson, T.B., Lantry, B.F., Lantry, J.R., Rinchard, J., 2021. Comparisons among three diet analyses demonstrate multiple patterns in the estimated adult diet of a freshwater piscivore, Salvelinus namaycush. Ecol. Indic. 127. https://doi.org/10.1016/j.ecolind.2021.107728
- 29. Galloway, A.W.E., Budge, S.M., 2020. The critical importance of experimentation in biomarker-based trophic ecology. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20190638. https://doi.org/10.1098/rstb.2019.0638
- 30. Galloway, A.W.E., Winder, M., 2015. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. Plos One 10. https://doi.org/10.1371/journal.pone.0130053
- 31. Garrido, D., Monroig, O., Galindo, A., Betancor, M.B., Perez, J.A., Kabeya, N., Marrero, M., Rodríguez, C., 2020. Lipid metabolism in Tinca tinca and its n-3 LC-PUFA biosynthesis capacity. Aquaculture 523, 735147. https://doi.org/10.1016/j.aquaculture.2020.735147
- 32. Gladyshev, M.I., Sushchik, N.N., Anishchenko, O.V., Makhutova, O.N., Kolmakov, V.I., Kalachova, G.S., Kolmakova, A.A., Dubovskaya, O.P., 2011. Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir. Oecologia 165, 521-531. https://doi.org/10.1007/s00442-010-1843-6
- 33. Gladyshev, M.I., Sushchik, N.N., Tolomeev, A.P., Dgebuadze, Y.Y., 2018. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev. Fish Biol. Fish. 28, 277-299. https://doi.org/10.1007/s11160-017-9511-0
- 34. Glazunova, A.A., Polunina, J.J., 2013. Peculiarities of under-ice zooplankton in the Curonian and Vistula Lagoons of the Baltic Sea. Inland Water Biol. 6, 301-304. https://doi.org/10.1134/S1995082913040081
- 35. Goedkoop, W., Sonesten, L., Ahlgren, G., Boberg, M., 2000. Fattyacids in profundal benthic invertebrates and their major food resources in Lake Erken, Sweden: seasonal variation and trophic indications. Can. J. Fish. Aquat. Sci. 57, 2267-2279. https://doi.org/10.1139/f00-201
- 36. Golubkov, S., Tiunov, A., Golubkov, M., 2021. Food-web modification in the eastern Gulf of Finland after invasion of Marenzelleria arctia (Spionidae, Polychaeta). NeoBiota 66, 75-94.
- 37. https://doi.org/10.3897/neobiota.66.63847
- 38. Guo, F., Bunn, S.E., Brett, M.T., Kainz, M.J., 2017. Polyunsaturated fatty acids in stream food webs - high dissimilarity among producers and consumers. Freshw. Biol. 62, 1325-1334. https://doi.org/10.1111/fwb.12956
- 39. Hansson, S., Arrhenius, F., Nellbring, S., 1997. Diet and growth of pikeperch (Stizostedion lucioperca L) in a Baltic Sea area. Fish. Res. 31, 163-167. https://doi.org/10.1016/s0165-7836(97)00022-2
- 40. Happel, A., Creque, S., Rinchard, J., Hoeoek, T., Bootsma, H., Janssen, J., Jude, D., Czesny, S., 2015. Exploring yellow perch diets in Lake Michigan through stomach content, fatty acids, and stable isotope ratios. J. Great Lakes Res. 41, 172-178.
- 41. https://doi.org/10.1016/j.jglr.2015.03.025
- 42. Happel, A., Stratton, L., Kolb, C., Hays, C., Rinchard, J., Czesny, S., 2016a. Evaluating quantitative fatty acid signature analysis (QFASA) in fish using controlled feeding experiments. Can. J. Fish. Aquat. Sci. 73, 1222-1229. https://doi.org/10.1139/cjfas-2015-0328
- 43. Happel, A., Stratton, L., Pattridge, R., Rinchard, J., Czesny, S., 2016b. Fatty-acid profiles of juvenile lake trout reflect experimental diets consisting of natural prey. Freshw. Biol. 61, 1466-1476. https://doi.org/10.1111/fwb.12786
- 44. Henrotte, E., Kpogue, D., Mandiki, S.N.M., Wang, N., Douxfils, J., Dick, J., Tocher, D., Kestemond, P., 2011. n-3 and n-6 fatty acid bioconversion abilities in Eurasian perch (Perca fluviatilis) at two developmental stages. Aquacult. Nutr. 17, 216-225. https://doi.org/10.1111/j.1365-095.2010.00754.x
- 45. Hjelm, J., Persson, L., Christensen, B., 2000. Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oecologia 122, 190-199. https://doi.org/10.1007/pl00008846
- 46. Hyslop, E.J., 1980. Stomach contents analysis — a review of methods and their application. J. Fish Biol. 17, 411-429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x
- 47. Ishizaki, Y., Masuda, R., Uematsu, K., Shimizu, K., Arimoto, M., Takeuchi, T., 2001. The effect of dietary docosahexaenoic acid on schooling behaviour and brain development in larval yellowtail. J. Fish Biol. 58, 1691-1703. https://doi.org/10.1006/jfbi.2001.1579
- 48. Iverson, S.J., Field, C., Bowen, W.D., Blanchard, W., 2004. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211-235. https://doi.org/10.1890/02-4105
- 49. Iverson, S.J., Springer, A.M., Kitaysky, A.S., 2007. Seabirds as indicators of food web structure and ecosystem variability: qualitative and quantitative diet analyses using fatty acids. Mar. Ecol. Prog. Ser. 352, 235-244. https://doi.org/10.3354/meps07073
- 50. Janaranjani, M., Shu-Chien, A.C., 2020. Complete repertoire of long-chain polyunsaturated fatty acids biosynthesis enzymes in a cyprinid, silver barb (Barbonymus gonionotus): cloning, functional characterization and dietary regulation of Elovl2 and Elovl4. Aquacult. Nutr. 26, 1835-1853. https://doi.org/10.1111/anu.13133
- 51. Janer, G., Navarro, J.C., Porte, C., 2007. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis. Comp. Biochem. Phys. C 146, 368-374. https://doi.org/10.1016/j.cbpc.2007.04.009
- 52. Kabeya, N., Fonseca, M.M., Ferrier, D.E.K., Navarro, J.C., Bay, L.K., Francis, D.S., Tocher, D., Castro, L.F.C., Monroig, O., 2018. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 4, eaar6849.https://doi.org/10.1126/sciadv.aar6849
- 53. Kakareko, T., 2002. The importance of benthic fauna in the diet of small common bream Abramis brama [L.], roach Rutilus rutilus [L.], pikeperch Sander lucioperca [L.] and ruffe Gymnocephalus cernuus [L.] in the Wloclawek Reservoir. Arch. Pol. Fish. 10, 221-231.
- 54. Käkelä, R., Käkelä, A., Kahle, S., Becker, P.H., Kelly, A., Furness, R.W., 2005. Fatty acid signatures in plasma of captive herring gulls as indicators of demersal or pelagic fish diet. Mar. Ecol. Prog. Ser. 293, 191-200. https://doi.org/10.3354/meps293191
- 55. Keinanen, M., Kakela, R., Ritvanen, T., Myllyla, T., Ponni, J., Vuorinen, P.J., 2017. Fatty acid composition of sprat (Sprattus sprattus) and herring (Clupea harengus) in the Baltic Sea as potential prey for salmon (Salmo salar). Helgoland Mar. Res. 71, 4. https://doi.org/10.1186/s10152-017-0484-0
- 56. Kelly, J.R., Scheibling, R.E., 2012. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 446, 1-22. https://doi.org/10.3354/meps09559
- 57. Kirsch, P.E., Iverson, S.J., Bowen, W.D., Kerr, S.R., Ackman, R.G., 1998. Dietary effects on the fatty acid signature of whole Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 55, 1378-1386. https://doi.org/10.1139/cjfas-55-6-1378
- 58. Kissil, G.W., Youngson, A., Cowey, C.B., 1987. Capacity of the European eel (Anguilla anguilla) to elongate and desaturate dietary linoleic acid. J. Nutr. 117, 1379-1384. https://doi.org/10.1093/jn/117.8.1379
- 59. Kornijów, R., 2018. Ecosystem of the Polish part of the Vistula Lagoon from the perspective of alternative stable states concept, with implications for management issues. Oceanologia 60 (3), 390-404. https://doi.org/10.1016/j.oceano.2018.02.004
- 60. Kornijów, R., Karpowicz, M., Ejsmont-Karabin, J., Nawrocka, L., de Eyto, E., Grzonkowski, K., Magnuszewski, A., Jakubowska, A., Wodzinowski, T., Woźniczka, A., 2020. Patchy distribution of phyto- and zooplankton in large and shallow lagoon under ice cover and resulting trophic interactions. Mar. Freshw. Res. 71, 1327-1341. https://doi.org/10.1071/Mf19259
- 61. Kornijów, R., Measey, G.J., Moss, B., 2016. The structure of the littoral: effects of waterlily density and perch predation on sediment and plant-associated macroinvertebrate communities. Freshw. Biol. 61, 32-50. https://doi.org/10.1111/fwb.12674
- 62. Kornijów, R., Pawlikowski, K., Bł ̨edzki, L.A., Drgas, A., Piwosz, K., Ameryk, A., Całkiewicz, J., 2021. Co-occurrence and potential resource partitioning between oligochaetes and chironomid larvae in a sediment depth gradient. Aquat. Sci. 83, 51. https://doi.org/10.1007/s00027-021-00800-z
- 63. Kornijów, R., Vakkilainen, K., Horppila, J., Luokkanen, E., Kairesalo, T., 2005. Impacts of a submerged plant (Elodea canadensis) on interactions between roach (Rutilus rutilus) and its invertebrate prey communities in a lake littoral zone. Freshw. Biol. 50, 262-276. https://doi.org/10.1111/j.1365-2427.2004.01318.x
- 64. Koussoroplis, A.-M., Bec, A., Perga, M.-E., Koutrakis, E., Bourdier, G., Desvilettes, C., 2011. Fatty acid transfer in the food web of a coastal Mediterranean lagoon: Evidence for high arachidonic acid retention in fish. Estuar. Coast. Shelf S. 91, 450-461. https://doi.org/10.1016/j.ecss.2010.11.010
- 65. Kownacka, J., Całkiewicz, J., Kornijów, R., 2020. A turning point in the development of phytoplankton in the Vistula Lagoon (southern Baltic Sea) at the beginning of the 21st century. Oceanologia 62 (4), 538-555. https://doi.org/10.1016/j.oceano.2020.08.004
- 66. Kraufvelin, P., Pekcan-Hekim, Z., Bergstrom, U., Florin, A.-B., Lehikoinen, A., Mattila, J., et al., 2018. Essential coastal habitats for fish in the Baltic Sea. Estuar. Coast. Shelf S. 204, 14-30. https://doi.org/10.1016/j.ecss.2018.02.014
- 67. Lammens, E.H.R.R., Geursen, J., McGillavry, P.J., 1985. Diet shifts, feeding efficiency and coexistence of bream Abramis brama, roach Rutilus rutilus and white bream Blicca bjorkna in hypertrophic lakes. In: Kullander, S.O., Fernholm, B. (Eds.), Proceedings of the Fifth Congress of European Ichthyologists. Department of Vertebrate Zoology, Swedish Museum of Natural History, Stockholm, 153-162.
- 68. Lammens, E.H.R.R., Hoogenboezem, W., 1991. Diets and feeding behaviour. In: Winfield, I.J., Nelson, J.S. (Eds.), Cyprinid fishes: systematics, biology and exploitation. Chapman and Hall, London, 353-376. https://doi.org/10.1007/978-94-011-3092-9_12
- 69. Lau, D.C.P., Vrede, T., Pickova, J., Goedkoop, W., 2012. Fatty acid composition of consumers in boreal lakes - variation across species, space and time. Freshw. Biol. 57, 24-38. https://doi.org/10.1111/j.1365-2427.2011.02690.x
- 70. Lee, R.F., Hagen, W., Kattner, G., 2006. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273-306. https://doi.org/10.3354/meps307273
- 71. Legeżyńska, J., Kędra, M., Walkusz, W., 2014. Identifying trophic relationships within the high Arctic benthic community: how much can fatty acids tell? Mar. Biol. 161, 821-836. https://doi.org/10.1007/s00227-013-2380-8
- 72. Lehtonen, H., Hansson, S., Winkler, H., 1996. Biology and exploitation of pikeperch, Stizostedion lucioperca (L), in the Baltic Sea area. Ann. Zool. Fenn. 33, 525-535.
- 73. Lind, Y., Huovila, T., Kakela, R., 2018. A retrospective study of fatty acid composition in Baltic herring (Clupea harengus membras) caught at three locations in the Baltic Sea (1973-2009).ICES J. Mar. Sci. 75, 330-339. https://doi.org/10.1093/icesjms/fsx127
- 74. Maazouzi, C., Medoc, V., Pihan, J.-C., Masson, G., 2011. Sizerelated dietary changes observed in young-of-the-year pumpkinseed (Lepomis gibbosus): stomach contents and fatty acid analyses. Aquat. Ecol. 45, 23-33. https://doi.org/10.1007/s10452-010-9320-1
- 75. Makhutova, O.N., Stoyanov, K.N., 2021. Fatty acid content and composition in tissues of Baikal grayling (Thymallus baicalensis), with a special focus on DHA synthesis. Aquac. Int. 29, 2415-2433. https://doi.org/10.1007/s10499-021-00755-w
- 76. Makhutova, O.N., Sushchik, N.N., Gladyshev, M.I., Ageev, A.V., Pryanichnikova, E.G., Kalachova, G.S., 2011. Is the fatty acid composition of freshwater zoobenthic invertebrates controlled by phylogenetic or trophic factors? Lipids 46, 709-721. https://doi.org/10.1007/s11745-011-3566-9
- 77. McLusky, D.S., Elliott, M., 2004. The Estuarine Ecosystem; Ecology, Threats and Management. Oxford University Press, Oxford, 214 pp.
- 78. Merad, I., Bellenger, S., Hichami, A., Khan, N.A., Soltani, N., 2018. Effect of cadmium exposure on essential omega-3 fatty acids in the edible bivalve Donax trunculus. Environ. Sci. Pollut. R. 25, 18242-18250. https://doi.org/10.1007/s11356-017-9031-4
- 79. Möllmann, C., Diekmann, R., Müller-Karulis, B., Kornilovs, G., Plikshs, M., Axe, P., 2009. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea. Glob. Change Biol. 15, 1377-1393. https://doi.org/10.1111/j.1365-2486.2008.01814.x
- 80. Möllmann, C., Müller-Karulis, B., Kornilovs, G., St John, M.A., 2008. Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feed-back coops in a simple ecosystem. ICES J. Mar. Sci. 65, 302-310. https://doi.org/10.1093/icesjms/fsm197
- 81. Monroig, O., Kabeya, N., 2018. Desaturases and elongases in-volved in polyunsaturated fatty acid biosynthesis in aquatic in-vertebrates: a comprehensive review. Fish. Sci. 84, 911-928. https://doi.org/10.1007/s12562-018-1254-x
- 82. Monroig, O., Tocher, D.R., Castro, L.F.C., 2018. Polyunsaturated fatty acid biosynthesis and metabolism in fish. In: Burdge, G.C. (Ed.), Polyunsaturated fatty acid metabolism. AOCS Press, London, 31-60. https://doi.org/10.1016/B978-0-12-811230-4.00003-X
- 83. Mourente, G., Tocher, D.R., Sargent, J.R., 1991. Specific accumu-lation of docosahexaenoic acid (226n-3) in brain lipids during development of juvenile turbot Scophthalmus maximus L. Lipids 26, 871-877. https://doi.org/10.1007/bf02535970
- 84. Mustamaki, N., Cederberg, T., Mattila, J., 2014. Diet, stable isotopes and morphology of Eurasian perch (Perca fluviatilis) in littoral and pelagic habitats in the northern Baltic Proper. Environ. Biol. Fish. 97, 675-689. https://doi.org/10.1007/s10641-013-0169-8
- 85. Nagelkerke, L.A.J., Sibbing, F.A., 1996. Efficiency of feeding on zebra mussel (Dreissena polymorpha) by common bream (Abramis brama), white bream (Blicca bjoerkna), and roach (Rutilus rutilus): The effects of morphology and behavior. Can. J. Fish. Aquat. Sci. 53, 2847-2861. https://doi.org/10.1139/cjfas-53-12-2847
- 86. Nawrocka, L., Kobos, J., 2011. The trophic state of the Vistula Lagoon: an assessment based on selected biotic and abiotic parameters according to the Water Framework Directive. Oceanologia 53 (3), 881-894. https://doi.org/10.5697/oc.53-3.881
- 87. Nielsen, J.M., Clare, E.L., Hayden, B., Brett, M.T., Kratina, P., 2018. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278-291. https://doi.org/10.1111/2041-210x.12869
- 88. Nowosad, J., Kucharczyk, D., Łuczy ́nska, J., Targo ́nska, K., Czarkowski, T.K., Biłas, M., Krejszeff, S., Horváth, L., Müller, T., 2015. Changes in European eel ovary development and body and ovary chemistry during stimulated maturation under controlled conditions: preliminary data. Aquacult. Int. 23, 13-27. https://doi.org/10.1007/s10499-014-9794-2
- 89. Ojaveer, H., Lankov, A., Raid, T., Pollumae, A., Klais, R., 2018. Selecting for three copepods-feeding of sprat and herring in the Baltic Sea. ICES J. Mar. Sci. 75, 2439-2449. https://doi.org/10.1093/icesjms/fsx249
- 90. Parrish, C.C., 2009. Essential fatty acids in aquatic food webs. In: Arts, M.T., Brett, M.T., Kainz, M.J. (Eds.), Lipids in Aquatic Ecosystems. Springer, New York, 309-326. https://doi.org/10.1007/978-0-387-89366-2_13
- 91. Paturej, E., Gutkowska, A., 2015. The effect of salinity levels on the structure of zooplankton communities. Arch. Biol. Sci. 67, 483-492. https://doi.org/10.2298/abs140910012p
- 92. Paturej, E., Gutkowska, A., Koszalka, J., Bowszys, M., 2017. Effect of physicochemical parameters on zooplankton in the brackish, coastal Vistula Lagoon. Oceanologia 59 (1), 49-56. https://doi.org/10.1016/j.oceano.2016.08.001
- 93. Pawlikowski, K., Kornijów, R., 2019. Role of macrophytes in structuring littoral habitats in the Vistula Lagoon (southern Baltic Sea). Oceanologia 61 (1), 26-37. https://doi.org/10.1016/j.oceano.2018.05.003
- 94. Persson, A., Brönmark, C., 2002. Foraging capacities and effects of competitive release on ontogenetic diet shift in bream, Abramis brama. Oikos 97, 271-281. https://doi.org/10.1034/j.1600-0706.2002.970213.x
- 95. Persson, J., Vrede, T., 2006. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw. Biol. 51, 887-900. https://doi.org/10.1111/j.1365-2427.2006.01540.x
- 96. Prejs, A., Lewandowski, K., Sta ́nczykowska-Piotrowska, A., 1990. Size-selective predation by roach (Rutilus rutilus) on zebra mussel (Dreissena polymorpha): field studies. Oecologia 83, 378-384. https://doi.org/10.1007/bf00317563
- 97. Prigge, E., Malzahn, A.M., Zumholz, K., Hanel, R., 2012. Dietary effects on fatty acid composition in muscle tissue of juvenile European eel, Anguilla anguilla (L.). Helgoland Mar. Res. 66, 51-61. https://doi.org/10.1007/s10152-011-0246-3
- 98. Psuty, I., Wilko ́nska, H., 2009. The stability of fish assemblages under unstable conditions: a ten-year series from the Polish part of the Vistula Lagoon. Arch. Pol. Fish. 17, 65-76. https://doi.org/10.2478/v10086-009-0004-1
- 99. Sawyer, J.M., Arts, M.T., Arhonditsis, G., Diamond, M.L., 2016. A general model of polyunsaturated fatty acid (PUFA) uptake, loss and transformation in freshwater fish. Ecol. Model. 323, 96-105. https://doi.org/10.1016/j.ecolmodel.2015.12.004
- 100. Scharnweber, K., Chaguaceda, F., Eklov, P., 2021. Fatty acid accumulation in feeding types of a natural freshwater fish population. Oecologia 196, 53-63. https://doi.org/10.1007/s00442-021-04913-y
- 101. Specziár, A., Rezsu, E.T., 2009. Feeding guilds and food resource partitioning in a lake fish assemblage: an ontogenetic approach. J. Fish Biol. 75, 247-267. https://doi.org/10.1111/j.1095-8649.2009.02283.x
- 102. Specziár, A., Tölg, L., Bíró, P., 1997. Feeding strategy and growth of cyprinids in the littoral zone of Lake Balaton. J. Fish Biol. 51, 1109-1124. https://doi.org/10.1111/j.1095-8649.1997.tb01130.x
- 103. StatSoft, 2011. Electronic statistics texbook StatSoft. Toolsa, OK, USA.
- 104. Stolarski, J., 1995. Sichel (Pelecus cultratus, L.) from the Vistula Lagoon. Bull. Sea Fish. Inst. 2, 11-21.
- 105. Stowasser, G., Pond, D.W., Collins, M.A., 2009. Using fatty acid analysis to elucidate the feeding habits of Southern Ocean mesopelagic fish. Mar. Biol. 156, 2289-2302. https://doi.org/10.1007/s00227-009-1256-4
- 106. Strandberg, U., Hiltunen, M., Jelkänen, E., Taipale, S.J., Kainz, M.J., Brett, M.T., Kankaala, P., 2015. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes. Sci. Tot. Environ. 536, 858-865. https://doi.org/10.1016/j.scitotenv.2015.07.010
- 107. Sushchik, N.N., Gladyshev, M.I., Kalachova, G.S., Makhutova, O.N., Ageev, A.V., 2006. Comparison of seasonal dynamics of the essential PUFA contents in benthic invertebrates and grayling Thymallus arcticus in the Yenisei river. Comp. Biochem. Phys. B 145, 278-287. https://doi.org/10.1016/j.cbpb.2006.05.014
- 108. Sushchik, N.N., Rudchenko, A.E., Gladyshev, M.I., 2017. Effect of season and trophic level on fatty acid composition and content of four commercial fish species from Krasnoyarsk Reservoir (Siberia, Russia). Fish. Res. 187, 178-187. https://doi.org/10.1016/j.fishres.2016.11.016
- 109. Sutton, T.M., Cyterski, M.J., Ney, J.J., Duval, M.C., 2004. Determination of factors influencing stomach content retention by striped bass captured using gillnets. J. Fish Biol. 64, 903-910. https://doi.org/10.1111/j.1095-8649.2004.0358.x
- 110. Szlinder-Richert, J., Usydus, Z., Wyszynski, M., Adamczyk, M., 2010. Variation in fat content and fatty-acid composition of the Baltic herring Clupea harengus membras. J. Fish Biol. 77, 585-599. https://doi.org/10.1111/j.1095-8649.2010.02696.x
- 111. Thiemann, G.W., Iverson, S.J., Stirling, I., 2008. Polar bear diets and Arctic marine food webs: insights from fatty acid analysis. Ecol. Monogr. 78, 591-613. https://doi.org/10.1890/07-1050.1
- 112. Tocher, D.R., 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11, 107-184. https://doi.org/10.1080/713610925
- 113. Tocher, D.R., 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 41, 717-732. https://doi.org/10.1111/j.1365-2109.2008.02150.x
- 114. Trushenski, J.T., Rombenso, A.N., 2020. Trophic levels predict the nutritional essentiality of polyunsaturated fatty acids in fish-introduction to a special section and a brief synthesis. N. Am. J. Aquacult. 82, 241-250. https://doi.org/10.1002/naaq.10137
- 115. Tverin, M., Esparza-Salas, R., Strömberg, A., Tang, P., Kokkonen, I., Herrero, A., Kauhala, K., Karlsson, O., Tiilikainen, R.,Vetemaa, M., Sinisalo, T., Käkelä, R., Lundström, K., 2019. Complementary methods assessing short and long-term prey of a marine top predator - Application to the grey seal-fishery conflict in the Baltic Sea. Plos One 14, e0208694. https://doi.org/10.1371/journal.pone.0208694
- 116. Usydus, Z., Szlinder-Richert, J., Adamczyk, M., Szatkowska, U., 2011. Marine and farmed fish in the Polish market: Comparison of the nutritional value. Food Chem. 126, 78-84. https://doi.org/10.1016/j.foodchem.2010.10.080
- 117. Wang, S.Q., Monroig, O., Tang, G.X., Zhang, L., You, C.H., Tocher, D.R., Li, Y, 2014. Investigating long-chain polyunsaturated fatty acid biosynthesis in teleost fish: functional characterization of fatty acyl desaturase (Fads2) and Elov15 elongase in the catadromous species, Japanese eel Anguilla japonica. Aquaculture 434, 57-65. https://doi.org/10.1016/j.aquaculture.2014.07.016
- 118. Wasmund, N., Uhlig, S., 2003. Phytoplankton trends in the Baltic Sea. ICES J. Mar. Sci. 60, 177-186. https://doi.org/10.1016/s1054-3139(02)00280-1
- 119. Wiśniewski, R.J., 1978. Effect of predators on Tubificidae groupings and their production in lakes. Pol. J. Ecol. 26, 493-512.
- 120. Xu, W.J., Wang, S.Q., You, C.H., Zhang, Y.L., Monroig, O., Tocher, D.R., Li, Y, 2020. The catadromous teleost Anguilla japonica has a complete enzymatic repertoire for the biosynthesis of ocosahexaenoic acid from alpha-linolenic acid: cloning and functional characterization of an Elovl2 elongase. Comp Biochem. Phys. B 240, 110373. https://doi.org/10.1016/j.cbpb.2019.110373
- 121. Żmudziński, 1996. The effect of the introduction of the American species Marenzelleria viridis (Polychaeta: Spionidae) on the benthic ecosystem of Vistula lagoon. Mar. Ecol. 17, 221-226. https://doi.org/10.1111/j.1439-0485.1996.tb00503.x
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37c5a602-77b7-4db0-9c2f-938166fd6748