PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-Objective Optimization of Motor Vessel Route

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an original method that allows computation of the optimal route of a motor vessel by minimizing its fuel consumption. The proposed method is based on a new and efficient meshing procedure that is used to define a set of possible routes. A consumption prediction tool has been developed in order to estimate the fuel consumption along a given trajectory. The consumption model involves the effects of the meteorological conditions, the shape of the hull and the power train characteristics. Pareto-optimization with a Multi-Objective Genetic Algorithm (MOGA) is taken as a framework for the definition and the solution of the multi-objective optimization problem addressed. The final goal of this study is to provide a decision helping tool giving the route that minimizes the fuel consumption in a limited or optimum time.
Twórcy
autor
  • Department of Mechanical Engineering and Automation, Institut National des Sciences Appliquées, Rennes, France
  • Department of Mechanical Engineering and Automation, Institut National des Sciences Appliquées, Rennes, France
Bibliografia
  • 1. Allsopp, T. 2000. Optimising Yacht Routes Under Uncertainty. Proceedings of the 2000 Fall National Conference of the Operations Reaseach Society of Japan : 176-183.
  • 2 Bleick, W. & Faulkner F. 1965. Minimum-Time Ship Routing. Journal of Applied Meteorology, 4 : 217-221.
  • 3 Braddock, R.D. 1970. On Meteorological Navigation. Journal of Applied Meteorology 9(1) : 149-153.
  • 4 Böttner, C.U. 2007. Weather Routing for Ships in Degraded Condition. International Symposium on Maritime Safety, Security and Environmental Protection, Athens, Greece.
  • 5 Carlton, J. 2007. Marine Propellers and Propulsion. Butter-worth-Heinemann.
  • 6 Fonseca, C.M. & Fleming, P.J. 1998. Multiobjective Optimiza-tion and Multiple Constraint Handling with Evolutionary Algorithms. IEEE Trans. On Systems, Man and Cybernetics 28 : 26-37.
  • 7 Hagiwara, H. & Spaans, J. 1987. Practical Weather Routing of Sail-Assisted Motor Vessels. Journal of Navigation 40(1) : 96-119.
  • 8 Haltiner, G.J., Hamilton, H.D. & Árnason, G. 1962. Minimal-Time Ship Routing. Journal of Applied Meterology 1(1) : 1-7.
  • 9. Harries, S., Heinmann, J. & Hinnenthal J. 2003. Pareto-Optimal Routing of Ships. International Conference on Ship and Shipping Research.
  • 10 Hinnentham, J. & Saerta, Ø. 2005. Robust Pareto-Optimal Routing of Ships Utilizing Ensemble Weather Forecasts. Maritime Transportation and Exploitation of Ocean and Coastal Resources : 1045-1050.
  • 11 ITTC. 1978. 1978 ITTC Performance Prediction Method for Single Screw Ships. Proceedings of the 15th International Towing Tank Conference, 1978, The Hague, Netherland.
  • 12 James, R.W. 1957. Application of Wave Forecasts to Marine Navigation. U.S. Navy Hydrographic Office.
  • 13 Journée, J.M.J. & Mejijers, J.H.C. 1980. Ship Routeing for Op-timum Performance. IME Transactions : 1-17.
  • 14 Wärtsilä. 2007. Project Guide Wärtsilä 46.
  • 15 Valdhizen, D.A.V. & Lamont, G.B. 2000. Multiobjective Evo-lutionary Algorithms : Analyzing the State-of-the-art. Evo-lutionary Computation 8 : 125-147.
  • 16 Zappoli, R. 1972. Minimum-Time Routing as an N-Stage De-cision Process. Journal of Applied Meteorology 11(3) : 429-435.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37c31cb0-a465-47e7-8797-23ca63adea26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.