PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of reservoir heterogeneity on the control of water encroachment into gas-condensate reservoirs during CO2 injection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper evaluates application of CO2 injection for the control of water encroachment from the aquifer into gas-condensate reservoir under active natural water drive. The results of numerical simulations indicated that injection of CO2 at the initial gas-water contact (GWC) level reduces the influx of water into gas-bearing zone and stabilizes the operation of production wells for a longer period. The optimum number of injection wells that leads to the maximum estimated ultimate recovery (EUR) factor was derived based on statistical analysis of the results. The maximum number of injection wells at the moment of CO2 break-through into production wells for homogeneous reservoir is equal to 6.41 (6) and for heterogeneous – 7.74 (8) wells. Study results indicated that with the increase of reservoir heterogeneity, denser injection well pattern is needed for the efficient blockage of aquifer water influx in comparison to homogeneous one with the same conditions. Gas EUR factor for the maximum number of injection wells in homogenous model is equal 64.05% and in heterogeneous – 55.56%. Base depletion case the EURs are 51.72% and 49.44%, respectively. The study results showed the technological efficiency of CO2 injection into the producing reservoir at initial GWC for the reduction of water influx and improvement of ultimate hydrocarbon recovery.
Wydawca
Rocznik
Tom
Strony
62--68
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • JSC "Ukrgasvydobuvannya" Department of analysis and 3D modeling of hydrocarbon field Kudriavska Street, 26/28, 04053, Kyiv, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas Karpatska St., 15, 76019, Ivano-Frankivsk, Ukraine
Bibliografia
  • [1] V.S. Boyko, R.M. Kondrat, R.S. Yaremiychuk. Dovidnyk z naftohazovoyi spravy, Kyiv: Lviv, 1996, 620 pp. (In Ukrainian).
  • [2] S.V. Matkivskyy, S.O. Kovalchuk, O.V. Burachok, O.R. Kondrat, L.I. Khaydarova. “Doslidzhennya vplyvu neznachnoho proyavu vodonapirnoyi systemy na dostovirnistʹ materialʹnoho balansu kolektoriv”. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, №2 (75), 2020, pp. 43-51. https://doi.org/10.31471/1993-9973-2020-2(75)-43-51 (In Ukrainian).
  • [3] A. Romi, O. Burachok, M.L. Nistor, C. Spyrou, Y. Seilov, O. Djuraev, S. Matkivskyi, D. Grytsai, O. Goryacheva, R. Soyma. “Advantage of Stochastic Facies Distribution Modeling for History Matching of Multi-stacked Highly-hetero-geneous Field of Dnieper-Donetsk Basin”, presented at Fourth EAGE Conference on Petroleum Geostatistics, Florence, Italy, 2019, https://doi.org/10.3997/2214-4609.201902188
  • [4] S. Matkivskyi, O. Kondrat, O. Burachok. “Investigation of the influence of the carbon dioxide (CO2) injection rate on the activity of the water pressure system during gas condensate fields development”, presented at Global Trends, Challenges and Horizons, Dnipro, Ukraine, 2020. https://doi.org/10.1051/e3sconf/202123001011
  • [5] V.S. Boyko, R.V. Boyko, L.M. Keba, O.V. Seminsʹkyy. Obvodnennya hazovykh i naftovykh sverdlovyn. Kyiv: Mizhnarodna ekonomichna fundatsiya, 2006, 791 pp. (In Ukrainian).
  • [6] R.M. Kondrat, V.M. Doroshenko, O.R. Kondrat. “Osoblyvosti zavershalʹnoyi stadiyi rozrobky rodovyshch nafty i hazu”, Naftohazova enerhetyka, № 1, 2007, pp. 17-21. http://elar.nung.edu.ua/handle/123456789/1303. (In Ukrainian).
  • [7] R.M. Kondrat. Hazokondensatootdacha plastov. Moscow: Nedra, 1992, 255 pp. (In Russian).
  • [8] A. Firoozabadi, G. Olsen, V.T. Golf-Racht. “Residual Gas Saturation in Water-Drive Gas Reservoir”, SPE paper 16335 presented at SPE California Regional Meeting, Ven-tura, California, USA, 1987. https://doi.org/10.2118/16355-MS
  • [9] S.N. Zakirov. Razrabotka gazovykh, gazokondensatnykh i neftegazokondensatnykh mestorozhdeniy. Moscow: Struna, 1998, 628 pp. (In Russian).
  • [10] S. N. Zakirov. Teoriya i proyektirovaniye razrabotki gazovykh i gazokondensatnykh mestorozhdeniy: uchebn. pos. dlya vuzov, Moscow: Nedra, 1980, 334 pp. (In Russian).
  • [11] R.M. Kondrat and L.I. Khaidarova. “Enhanced gas recovery from depleted gas fields with residual natural gas displacement by nitrogen”, Naukovyy visnyk Natsionalʹnoho hirny-choho universytetu, № 5, 2017, pp. 23-28. http://nbuv.gov.ua/UJRN/Nvngu_2017_5_6 (In Ukrainian).
  • [12] D.D. Mamora and J.G. Seo. “Enhanced Gas Recovery by Carbon Dioxide Sequestration in Depleted Gas Reservoirs”, SPE paper 77347 presented at SPE Technical Conference and Exhibition, San Antonio, Texas, USA, 2002. https://doi.org/10.2118/77347-MS
  • [13] O. Kondrat and S. Matkivskyi. “Research of the influence of the pattern arrangement of injection wells on the gas recovery factor when injecting carbon dioxide into reservoir”. Technology and system of power supply, №5/1 (55), 2020, pp. 12-17. https://doi.org/10.15587/2706-5448.2020.215074
  • [14] A.T. Turta, S.S.K. Sim, A.K. Singhal, B.F. Hawkins. “En-hanced Gas Recovery: Effect of Reservoir Heterogeneity on Gas-Gas Displacement”, Presented at Canadian International Petroleum Conference, Calgary, Alberta, Canada, 2009. https://doi.org/10.2118/2009-023
  • [15] J.P. Clancy and R.E. Gilchrist. “Nitrogen injection Applications Emerge in the Rockies”. SPE paper 11848 presented at SPE Rocky Mountain Regional Meeting, Salt Lake City, Utah, USA, 1983. https://doi.org/10.2118/11848-MS
  • [16] S.S.K. Sim, A.T. Turta, A.K. Singhal, B.F. Hawkins. “Enhanced Gas Recovery: Factors Affecting Gas-Gas Displace-ment Efficiency”, presented at 9th Canadian International Petroleum Conference, Calgary, Canada, 2008. https://doi.org/10.2118/2008-145
  • [17] M.M. Rafiee, M. Ramazanian. “Simulation Study of Enhanced Gas Recovery Process Using a Compositional and a Black Oil Simulator”. SPE paper 144951 presented at SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 2011. https://doi.org/10.2118/144951-MS
  • [18] S.A. Jikich, D.H. Smith, W.N. Sams, G.S. Bromhal. “En-hanced Gas Recovery (EGR) with Carbon Dioxide Sequestration: A Simulation Study of Effects of Injection Strategy and Operational Parameters”. SPE paper 84813 presented at SPE Eastern Regional Meeting, Pittsburgh, Pennsylvania, 2003. https://doi.org/10.2118/84813-MS
  • [19] A. Al-Hasami, S. Ren, B. Tohidi. “CO2 Injection for Enhanced Gas Recovery and Geo-Storage: Reservoir Simulation and Economics”. SPE paper 94128 presented at SPE Europec/EAGE Annual Conference, Madrid, Spain, 2005. https://doi.org/10.2118/94129-MS
  • [20] С. M. Oldenburg, D. H. Law, Y. L. Gallo, S. P. White. “Mixing of CO2 and CH4 in Gas Reservoirs: Code Comparison Studies”, Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume 1, 2003, pp. 443-448. https://doi.org/10.1016/B978-008044276-1/50071-4.
  • [21] A.T. Turta, S.S.K. Sim, A. K. Singhai, B. F. Hawkins “Basic Investigations on Enhanced Recovery by Gas-Gas Displacement”. Journal of Canada Petroleum Technology. Volume 47, Number 10, 2008. https://doi.org/10.2118/08-10-39
  • [22] S. Kryvulya, S. Matkivskyi, O. Kondrat, Ye. Bikman. “Ap-proval of the technology of carbon dioxide injection into the V-16 water driven reservoir of the Hadiach field (Ukraine) under the conditions of the water pressure mode”. Technology and system of power supply. №6/1(56), 2020. pp. 13-18. https://doi.org/10.15587/2706-5448.2020.217780 (In Ukrainian).
  • [23] Ye.M. Bakulin. “Osnovni napryamky rozvytku naftovoyi i hazovoyi promyslovosti Ukrayiny”. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, № 4(25), 2010, pp. 5-13. (In Ukrainian).
  • [24] R.M. Ter-Sarkisov. Razrabotka i dobycha trudnoizvlekayemykh zapasov uglevodorodov. Moscow: Nedra, 2005, 407 pp. (In Russian).
  • [25] Q.M. Malik and M.R. Islam. “CO2 Injection in the Weyburn Field of Canada: Optimization of Enhanced Oil Recovery and Greenhouse Gas Storage With Horizontal Wells”, SPE paper 59327 presented at the 2000 SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 2000. https://doi.org/10.2118/00-09-01.
  • [26] S. Doleschall, A. Szittar, G. Udvardi. “Review of the 30 Years' Experience of the CO2 Imported Oil Recovery Projects in Hungary”. SPE paper 22362 presented at International Meeting on Petroleum Engineering, Beijing, China, 1992. https://doi.org/10.2118/22362-MS
  • [27] H. Agustssen and G.H. Grinestaff. “A Study of IOR by CO2 Injection in the Gullfaks Field, Offshore Norway”, SPE paper 89338 presented at SPE/DOE 14th Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, 2004. https://doi.org/10.2118/89338-MS
  • [28] ECLIPSE* Technical Description. Version 2020.1 © Schlumberger, 2020, pp. 1078. *Mark of Schlumberger.
  • [29] Petrel* Help. Version 2019.2. *Mark of Schlumberger.
  • [30] O.V. Burachok, D.V. Pershyn, S.V. Matkivskyy, Ye.S. Bikman, O.R. Kondrat. “Osoblyvosti vidtvorennya rivnyannya stanu hazokondensatnykh sumishey za umovy obmezhenoyi vkhidnoyi informatsiyi”, Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, № 1(74), 2020, pp. 82-88. https://doi.org/10.31471/1993-9973-2020-1(74)-82-88
  • [31] C.H. Whitson and M.R. Brule. Phase Behavior, Richardson, Texas, 2000, 240 pp. (SPE Monograph Series, Volume 20).
  • [32] M.A. Myslyuk and Yu.O. Zarubin. Modelyuvannya yavyshch i protsesiv u naftohazopromysloviy spravi: pidruchnyk. Ivano-Frankivsk: Ekor, 1999, 494 pp. (In Ukrainian).
  • [33] O. Burachok, D. Pershyn, C. Spyrou, G. Turkarslan, M.L. Nistor, D. Grytsai, S. Matkivskyi, Y. Bikman, O. Kondrat. “Gas-Condensate PVT Fluid Modeling Methodology Based on Limited Data”, presented at 82nd EAGE Conference & Exhibition, Amsterdam, The Netherlands, 2020. https://doi.org/10.3997/2214-4609.202010155
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37b2974b-9c35-4c8c-a05e-5ed05a73c83d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.