PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical and Elemental Composition of Ammi visnaga L. and Calendula officinalis L. from Meknes, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The powders of Ammi visnaga L. and Calendula officinalis L. plants collected from Meknes region were subjected to three types of analysis, including Fourier transforms infrared spectroscopy (FTIR) analysis, CHNS/O analysis, and ICP-AES analysis with the aim of comparing and giving an insight into the nutritional value, medicinal properties, and potential applications in different fields. The results of the FTIR analysis showed absorbance bands in the same wavelengths, but with different peaks, indicating the presence of long-chain linear aliphatic compounds, lipids, amides, aromatic compounds, and other functional groups in both plants. The CHNS/O analysis revealed high levels of carbon and oxygen, followed by hydrogen, nitrogen, and sulfur for both plants, with no significant differences in the values. The ICP analysis detected 16 minerals, including calcium, potassium, phosphorus, and magnesium in Ammi visnaga, and low levels of sodium in comparison to Calendula officinalis. Calendula officinalis accumulated more aluminum and lead than Ammi visnaga, indicating higher tolerance to contaminations. Zinc, iron, manganese, and copper were important micronutrients present in both plants. The findings of this study suggest that both plants have significant amounts of phytochemical compounds and minerals, which could be beneficial for their potential use in the pharmaceutical, nutraceutical, and cosmetic industries.
Słowa kluczowe
Rocznik
Strony
84--94
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
  • Functional Ecology And Environmental Egineering Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Benabdellah University, B.P. 2202 Imouzzer Road, 30000, Fez, Morocco
  • Department of Plant and Environment Protection, National School of Agriculture, Km10, Rte Haj Kaddour, B.P. S/40,50001, Meknes, Morocco
autor
  • Functional Ecology And Environmental Egineering Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Benabdellah University, B.P. 2202 Imouzzer Road, 30000, Fez, Morocco
  • Functional Ecology And Environmental Egineering Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Benabdellah University, B.P. 2202 Imouzzer Road, 30000, Fez, Morocco
  • Department of Plant and Environment Protection, National School of Agriculture, Km10, Rte Haj Kaddour, B.P. S/40,50001, Meknes, Morocco
  • Environment and Soil Microbiology Unit, Faculty of Sciences-Moulay Ismail University, B.P. 11201 Zitoune, 50000, Meknes, Morocco
  • Department of Plant and Environment Protection, National School of Agriculture, Km10, Rte Haj Kaddour, B.P. S/40,50001, Meknes, Morocco
  • Functional Ecology And Environmental Egineering Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Benabdellah University, B.P. 2202 Imouzzer Road, 30000, Fez, Morocco
  • Department of Plant and Environment Protection, National School of Agriculture, Km10, Rte Haj Kaddour, B.P. S/40,50001, Meknes, Morocco
Bibliografia
  • 1. Abousamra, M.M., Basha, M., Awdan, S.E., Ismail, N.S.M. 2016. Effect of methyl- Β -cyclodextrin complexation on the hypoglycemic and hypolipidemic effects of khellin: Experimental study. International Journal of Pharmacy and Pharmaceutical Sciences, 8(11), 165–172. https://doi.org/10.22159/ijpps.2016v8i11.14365
  • 2. Agus, C., Wulandari, D., Primananda, E., Hendryan, A., Harianja, V. 2017. The Role of Soil Amendment on Tropical Post Tin Mining Area in Bangka Island Indonesia for Dignified and Sustainable Environment and Life. IOP Conference Series: Earth and Environmental Science, 83, 012030.
  • 3. Ahmed, S., Atiq-ur-Rahman, Qadiruddin, M., Qureshi, S. 2003. Elemental analysis of calendula officinalis plant and its probable therapeutic role in health. Pak. J. Sci. Ind. Res, 46(4), 283–287.
  • 4. Al-mussawi, Z.K., Al-hussani, I.M. 2019. Phytochemical study of Calendula officinalis plant by used GC-MS and FTIR techniques. Plant Archives, 19(1), 845–851.
  • 5. Alaboudi, K.A., Ahmed, B., Brodie, G. 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63(1), 123–127. https://doi.org/10.1016/j.aoas.2018.05.007
  • 6. Alejandro, S., Höller, S., Meier, B., Peiter, E. 2020. Manganese in Plants: From Acquisition to Subcellular Allocation. Frontiers in Plant Science, 11, 300. https://doi.org/10.3389/fpls.2020.00300
  • 7. Alloway, B.J. 2008. Zinc in soils and crop production (2nd ed.). IZA and IFA.
  • 8. Alloway, B.J. 2013. Heavy Metals in soils: trace Metals and Metalloids in soils and their bioavailability. In: Environmental Pollution (3rd ed., Vol. 22). Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-007-4470-7
  • 9. Angelova, V., Ichtjarova, M. 2018. Potential of calendula officinalis for phytoremediation of soils contaminated with heavy metals. IX International Scientific Agriculture Symposium “AGROSYM 2018”, Jahorina, Bosnia and Herzegovina, 4-7 October 2018. Book of Proceedings, 1465–1473.
  • 10. Benabderrahmane, A., Atmani, M., Boutagayout, A., Rhioui, W., Belmalha, S. 2023. Phytochemical Investigation of Thymus zygis L. and Salvia officinalis L. Collected from Fez-Meknes Region, Morocco. Egyptian Journal of Botany, 63(2). https://doi.org/10.21608/ejbo.2023.181580.2215
  • 11. Beyazit, N., Çakmak, D., Demetgül, C. 2017. Chromone-based Schiff base metal complexes as catalysts for catechol oxidation: Synthesis, kinetics and electrochemical studies Neslihan. Tetrahedron, 73(19), 2774–2779. https://doi.org/10.1016/j.tet.2017.03.081
  • 12. Bhagavathula, A.S., Al-Khatib, A.J.M., Elnour, A.A., Al Kalbani, N.M.S., Shehab, A. 2015. Ammi Visnaga in treatment of urolithiasis and hypertriglyceridemia. Pharmacognosy Research, 7(4), 397–400. https://doi.org/10.4103/0974-8490.167894
  • 13. Billah, M., Khan, M., Bano, A., Hassan, T.U., Munir, A., Gurmani, A.R. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904–916. https://doi.org/10.1080/01490451.2019.1654043
  • 14. Briat, J., Duc, C., Ravet, K., Gaymard, F. 2010. Biochimica et Biophysica Acta Ferritins and iron storage in plants. Biochimica et Biophysica Acta, 1800(8), 806–814. https://doi.org/10.1016/j.bbagen.2009.12.003
  • 15. Burger, A., Lichtscheidl, I. 2019. Strontium in the environment : Review about reactions of plants towards stable and radioactive strontium isotopes. Science of the Total Environment, 653, 1458–1512. https://doi.org/10.1016/j.scitotenv.2018.10.312
  • 16. Camacho-Crist, J.J., Rexach, J., Gonzalez-Fontes, A. 2008. Boron in Plants: Deficiency and Toxicity. Journal of Integrative Plant Biology 2008, 50(10), 1247–1255. https://doi.org/10.1111/j.1744-7909.2008.00742.x
  • 17. Coates, J. 2006. Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 10815–10837. https://doi.org/10.1002/9780470027318.a5606
  • 18. Dassou, O.S., Bonneau, X., Aholoukpè, H., Vanhove, W., Ollivier, J., Peprah, S., Flori, A., Durandgasselin, T., Mensah, A.G., Sinsin, B.A., Damme, P.V. 2022. Oil palm (Elaeis guineensis Jacq.) genetic differences in mineral nutrition: potassium and magnesium effects on morphological characteristics of four oil palm progenies in Nigeria (West Africa). Oil Seeds & Fats Crops and Lipids, 29, 31. https://doi.org/10.1051/ocl/2022024
  • 19. Duan, Y., Yang, H., Yang, H., Wu, Y., Fan, S., Wu, W., Lyu, L., Li, W. 2023. Integrative physiological, metabolomic and transcriptomic analysis reveals nitrogen preference and carbon and nitrogen metabolism in blackberry plants. Journal of Plant Physiology, 280, 153888. https://doi.org/10.1016/j.jplph.2022.153888
  • 20. Ebrahim, A.M., Eltayeb, H., Khalid, H., Abdalla, W., Grill, P., Michalke, B. 2012. Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. Journal of Natural Medicines, 66(4), 671–679. https://doi.org/10.1007/s11418-012-0630-6
  • 21. Ebrahim, A.M., Etayeb, M.A., Khalid, H., Noun, M., Roumie, M., Michalke, B. 2014. PIXE as a complement to ICP-OES trace metal analysis in Sudanese medicinal plants. Applied Radiation and Isotopes, 90, 218–224. https://doi.org/10.1016/j.apradiso.2014.04.013
  • 22. Edel, K.H., Marchadier, E., Brownlee, C., Kudla, J., Hetherington, A.M. 2017. The Evolution of Calcium-Based Signalling in Plants. Current Biology, 27(13), R667–R679. https://doi.org/10.1016/j.cub.2017.05.020
  • 23. El Sharabasy, S.F.E., Abdel-AAl, W.B., Bosila, H.A., Bana, A.-M.A., Mansour, B.M. 2019. The Effect of Some Micro-Elements on Free Amino Acids, Indols and total Phenols Production from Embryogenic Callus of Tow Date Palm Cultivars (Sakkoty and Bartamuda). By-Products of Palm Trees and Their Applications, 11, 235–243. https://doi.org/10.21741/9781644900178-19
  • 24. Evans, L.S. 2023. Production of growth centers in roots and stems of chaparrals: Implications to revival after fires. Rhizosphere, 25, 100663. https://doi.org/10.1016/j.rhisph.2023.100663
  • 25. Hanana, M., Hamrouni, L., Cagnac, O., Blumwald, E. 2011. Mechanisms and cellular strategies of salinity tolerance (NaCl) in plants. Dossiers Environ., 19(1), 121–140. https://doi.org/10.1139/a11-003
  • 26. Hasan, H.A., Alnaqqash, Z.A.E. 2020. Pharmacognostical and phytochemical study of Calendula officinalis L leaves cultivated in Baghdad. AIP Conference Proceedings, 2290, 020019–1–020019–9. https://doi.org/10.1063/5.0027577
  • 27. Hashim, S., Jan, A., Marwat, K.B., Khan, M.A. 2014. Phytochemistry and medicinal properties of Ammi visnaga (Apiacae). Pakistan Journal of Botany, 46(3), 861–867.
  • 28. Hussain, S. 2011. Caractérisation physiologique de génotypes d’agrume: études de tolérance au stress salin et impacts de la présence de porte-greffes zygotiques et autotétraploïdes. Corse University.
  • 29. Jurca, T., Marian, E., Tita, B., Vicas, S., Pallag, A., Toth, I., Krusper, L., Braun, M., Vicas, L. 2017. Determination of oligoelements content of plant material and assessment of bioactive compounds from Calendula officinalis lyophilized extract. Revista de Chimie, 68(8), 1786–1789. https://doi.org/10.37358/rc.17.8.5765
  • 30. Kamal, F.Z., Stanciu, G.D., Lefter, R., Cotea, V.V, Niculaua, M., Ababei, D.C., Ciobica, A., Ech-chahad, A. 2022. Chemical Composition and Antioxidant Activity of Ammi visnaga L. Essential Oil. Antioxidants, 11, 347. https://doi.org/10.3390/ antiox11020347
  • 31. Kashulina, G., Reimann, C., Banks, D. 2003. Sulphur in the Arctic environment (3): environmental impact. Environmental Pollution, 124, 151–171. https://doi.org/10.1016/S0269-7491(02)00401-3
  • 32. Keddad, A., Baaliouamer, A., Hazzit, M. 2016. Chemical Composition and Antioxidant Activity of Essential Oils from Umbels of Algerian Ammi visnaga (L.). Journal of Essential Oil-Bearing Plants, 19(5), 1243–1250. https://doi.org/10.1080/0972060X.2015.1085813
  • 33. Kettunen, I.H. 2022. Development of geochemical and geobotanical exploration methods for cobalt – a case study from Jouhineva Co-Cu-Ag-Au ore in Ostrobothnia. Helsinki university.
  • 34. Khan, A., Hassan, S.M., Mughal, S.S. 2022. Biological Evaluation of a Herbal Plant : Cichrorium intybus. Pharmaceutical Science and Technology, 6(2), 26–38. https://doi.org/10.11648/j.pst.20220602.11
  • 35. Khare, S., Singh, N.B., Singh, A., Hussain, I., Niharika, K., Yadav, V., Bano, C., Yadav, R.K., Amist, N. 2020. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology, 63(3), 203–216. https://doi.org/10.1007/s12374-020-09245-7
  • 36. Lv, H., Zhang, Y., Sun, Y., Duan, Y. 2019. Elemental characteristics of Sanqi (Panax notoginseng) in Yunnan province of China: Multielement determination by ICP-AES and ICP-MS and statistical analysis. Microchemical Journal, 146(January), 931–939. https://doi.org/10.1016/j.microc.2019.02.035
  • 37. Ma, J.F. 2000. Role of Organic Acids in Detoxification of Aluminum in Higher Plants. Plant Cell Physiology, 41(4), 383–390.
  • 38. Ma, J.F., Yamaji, N. 2006. Silicon uptake and accumulation in higher plants. TRENDS in Plant Science, 11(8), 1–6.
  • 39. Mandal, M., Misra, D., Ghosh, N.N., Mandal, V. 2017. Physicochemical and elemental studies of Hydrocotyle javanica Thunb. for standardization as herbal drug. Asian Pacific Journal of Tropical Biomedicine, 7(11), 979–986. https://doi.org/10.1016/j.apjtb.2017.10.001
  • 40. Mhamdi, A., Breusegem, F.V. 2018. Reactive oxygen species in plant development. Development, 145, dev164376. https://doi.org/10.1242/dev.164376
  • 41. Mossor-Pietraszewska, T. 2001. Effect of aluminium on plant growth and metabolism. Acta Biochimica Polonica, 48(3), 673–686.
  • 42. Movasaghi, Z., Rehman, S., Rehman, I. 2008. Fourier Transform Infrared ( FTIR ) Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 43(2), 134–179. https://doi.org/10.1080/05704920701829043
  • 43. Müller, F., Cyster, L., Raitt, L., Aalbers, J. 2015. The effects of tin (Sn) additions on the growth of spinach plants Los. International Journal of Experimental Botany, 84, 461–465.
  • 44. Nagaraj, N., Ravikumar, N., Mahalaxmi, S., Pallavi, S. 2022. Effect of Calendula officinalis Linn in Oral health – A Review. International Journal of Ayurvedic Medicine, 13(3), 601–605. https://doi.org/10.47552/ijam.v13i3.2966
  • 45. Nair, L.D., Sar, S.K., Sahu, M., Diwan, V. 2017. Ultimate Analysis of Some Medicinal Plants (Tulsi, Neem, Karanj, Kalmeg) of Chhattisgarh, India and Their Comparative Study. International Journal of Engineering Science Invention, 6(10), 39–41.
  • 46. Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R. 2019. How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806
  • 47. Ondeko, D.A., Juma, B.F., Baraza, L.D., Nyongesa, P.K. 2020. LC-ESI/MS and GC-MS Methanol Extract Analysis, Phytochemical and Antimicrobial Activity Studies of Centella asiatica. Asian Journal of Chemical Sciences, 8(3), 32–51. https://doi.org/10.9734/ajocs/2020/v8i319046
  • 48. Pandy, N. 2018. Role of Plant Nutrients in Plant Growth and Physiology. Plant Nutrients and Abiotic Stress Tolerance, 51–93.
  • 49. Patil, K., Sanjay, C., Doggalli, N., Devi, K.R., Harshitha, N. 2022. A Review of Calendula OfficinalisMagic in Science. Journal of Clinical and Diagnostic Research, 16(2), ZE23–ZE27. https://doi.org/10.7860/jcdr/2022/52195.16024
  • 50. Rahmatollah, R., Mahbobeh, R. 2010. Mineral contents of some plants used in Iran. Pharmacognosy Research, 2(4), 267–270. https://doi.org/10.4103/0974-8490.69130
  • 51. Ruiz, T.P., Drzewiecka, A., Koziol, A.E., Gomez, M.F., Ostrowska, K., Struga, M., Kossakowski, J. 2012. Derivatives of benzo [b] furan. Part I . Conformational studies of khellinone and visnaginone. Structural Chemistry, 23, 1573–1584. https://doi.org/10.1007/s11224-012-9959-4
  • 52. Safdar, W., Majeed, H., Naveed, I., Kayani, W.K., Ahmed, H., Hussain, S., Kamal, A. 2010. Pharma- cognostical study of the medicinal plant Calendula officinalis L. (family compositae). International Journal of Cell & Molecular Biology, 1(2), 108–116.
  • 53. Sahingil, D. 2019. GC/MS-Olfactometric Characterization of the Volatile Compounds, Determination Antimicrobial and Antioxidant Activity of Essential Oil from Flowers of Calendula (Calendula officinalis L.). Journal of Essential Oil-Bearing Plants, 22(6), 1571–1580. https://doi.org/10.1080/0972060X.2019.1703829
  • 54. Sahu, A., Sen, S., Mishra, S.C. 2020. Materials Today : Proceedings Processing and properties of Calotropis gigantea biochar: A wasteland weed. Materials Today: Proceedings, 33, 5334–5340. https://doi.org/10.1016/j.matpr.2020.03.024
  • 55. Suwa, R., Jayachandran, K., Nguyen, T. 2008. Barium Toxicity Effects in Soybean Plants. September 2019. https://doi.org/10.1007/s00244-008-9132-7
  • 56. Wang, M., Zheng, Q., Shen, Q., Guo, S. 2013. The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14(4), 7370–7390. https://doi.org/10.3390/ijms14047370
  • 57. Yruela, I. 2009. Copper in plants: acquisition, transport and interactions. Funct Plant Biol, 36(5), 409–430. https://doi.org/10.1071/FP08288
  • 58. Zenda, T., Liu, S., Dong, A., Duan, H. 2021. Revisiting Sulphur – The Once Neglected Nutrient: It’s Roles in Plant Growth, Metabolism, Stress Tolerance and Crop Production. Agriculture, 11, 626. https://doi.org/10.3390/agriculture11070626
  • 59. Zhan, X., Chen, Z., Chen, R., Shen, C. 2022. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. Frontiers in Plant Science, 13, 1–14. https://doi.org/10.3389/fpls.2022.877304
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37ab6bf5-aa4a-4164-9749-5c76b97dd0bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.