PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Climatic Response of Tracheid Features of Picea meyeri Along Altitude Gradient of Luyashan Mountains of North China

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Changing localized environmental conditions along altitude gradients could modify the responses of tree xylem structures to climate variations. To explore how trees adapt to local environment and respond to climate variants, we analysed the variation of Picea meyeri xylem tracheid features and the relationships with climate variables along an altitude gradient (1970, 2240, 2490 and 2650 m above sea level) of the Luyashan Mountains in the North China. The results mainly indicated the following: (1) tracheid number and diameter of P. meyeri showed significant differences among the four sites along the altitude gradient; (2) trees at site 2 (2240 m) and site 3 (2490 m) are similar in age, but the xylem tracheid number and diameter of these trees were significantly different, which may indicate different functional adaptation; (3) the relationships between xylem features' residual chronologies and the monthly climate data were inconsistent along altitude gradients, which indicated that the limiting factor of P. meyeri growth along the altitude gradients, shifted from drought stress at lower altitudes to low-temperature stress at higher altitudes.
Rocznik
Strony
345--358
Opis fizyczny
Bibliogr. 55 poz., fot., mapa, rys., tab., wykr.
Twórcy
autor
  • Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
  • College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
autor
  • Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
  • College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
autor
  • Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
  • College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
  • Business Development Department, China Forest International Engineering Consulting Co., Ltd., 14 Hepinglibei Street, Dongcheng District, Beijing 100013, China
autor
  • Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
  • College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
autor
  • Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geography Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
  • College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
autor
  • Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, 300 Massachusetts Ave, Amherst MA, 01003, USA
Bibliografia
  • [1] Berner L. T., Law B. E. 2015 — Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon — Biogeosciences, 12: 6617-6635.
  • [2] Biondi F., Waikul K. 2004 — DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies — Comput. Geosci. 30: 303-311.
  • [3] Cai Q., Liu Y. 2013 — Climatic response of three tree species growing at different elevations in the Lüliang Mountains of Northern China — Dendrochronologia, 31: 311-317.
  • [4] Carrer M., von Arx G., Castagneri D., Petit G. 2015 — Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture — Tree Physiol. 35: 27-33.
  • [5] Castagneri D., Petit G., Carrer M. 2015 — Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient — Tree Physiol. 35: 1378-1387.
  • [6] Chave J., Coomes D., Jansen S., Lewis S. L., Swenson N. G., Zanne A. E. 2009 — Towards a worldwide wood economics spectrum — Ecol. Lett. 12: 351-366.
  • [7] Cook E. R. 1985 — A time series analysis approach to tree ring standardization — University of Arizona, 171 pp.
  • [8] Cook E. R., Kairiukstis L. A. 1990 — Methods of dendrochronology: applications in the environmental sciences — Springer Science & Business Media, 340 pp.
  • [9] Dang H., Zhang Y., Zhang K., Jiang M., Zhang Q. 2013 — Climate-growth relationships of subalpine fir (Abies fargesii) across the altitudinal range in the Shennongjia Mountains, central China — Clim. Change, 117: 903-917.
  • [10] Domrös M, Peng G. 1988 — The climate of China — Berlin Heidelberg New York, Springer, 280 pp.
  • [11] Denne M. P. 1989 — Definition of latewood according to Mork (1928) — IAWA, J 10: 59-62.
  • [12] Esper J., Frank D. C., Wilson R. J. S., Büntgen U., Treydte K. 2007 — Uniform growth trends among central Asian low- and high-elevation juniper tree sites — Trees, 21: 141-150.
  • [13] Fonti P., Babushkina E. A. 2016 — Tracheid anatomical responses to climate in a forest-steppe in Southern Siberia — Dendrochronologia, 39: 32-41.
  • [14] Fonti P., Von Arx G., García-González I., Eilmann B., Sass-Klaassen U., Gärtner H. 2010 — Studying global change through investigation of the plastic responses of xylem anatomy in tree rings — New Phytol. 185: 42-53.
  • [15] Fritts H. C. 1976 — Tree rings and climate — New York, NY, USA, Elsevier, 582 pp.
  • [16] Fritts H. C. 1991 — Reconstruction large scale climate patterns from tree-ring data, Tuson, USA. Arizona — The Arizona University Press, 286 pp.
  • [17] Fritts H. C., Shatz D. J. 1975 — Selecting and characterizing tree-ring chronologies for dendroclimatic analysis — Tree-ring Bull. 35: 31-40.
  • [18] Gričar J., Prislan P., de Luis M., Gryc V., Hacurová J., Vavrčík H. 2015 — Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions — Front. Plant. Sci. 6: 730.
  • [19] Hacke U. G., Sperry J. S., Wheeler J. K., Castro L. 2006 — Scaling of angiosperm xylem structure with safety and efficiency — Tree Physiol. 26: 689-701.
  • [20] He M., Yang B., Bräuning A. 2013 — Tree growth-climate relationships of Juniperus tibetica along an altitudinal gradient on the southern Tibetan Plateau — Trees, 27: 429-439.
  • [21] Holmes R. L. 1983 — Computer-assisted quality control in tree-ring dating and measurement — Tree-ring Bull. 43: 69-78.
  • [22] Jiang Y., Zhang W., Wang M., Kang M., Dong M. 2014 — Radial Growth of Two Dominant Montane Conifer Tree Species in Response to Climate Change in North- Central China — PLOS ONE 9: e112537.
  • [23] Jiao L, Jiang Y, Wang M, Kang X, Zhang W, Zhang L, Zhao S. 2016 — Responses to climate change in radial growth of Picea schrenkiana along elevations of the eastern Tianshan Mountains, northwest China — Dendrochronologia, 40: 117-127.
  • [24] Jyske T., Mäkinen H., Kalliokoski T., Nöjd P. 2014 — Intra-annual tracheid production of Norway spruce and Scots pine across a latitudinal gradient in Finland — Agric. For. Meteorol. 194: 241-254.
  • [25] Kimball K. D., Keifer M. 1988 — Climatic comparisons with tree-ring data from montane forests: are the climatic data appropriate? — Can. J. For. Res. 18: 385-390.
  • [26] Lenz A., Vitasse Y., Hoch G., Körner C. 2014 — Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit — J. Ecol. 102: 1537-1548.
  • [27] Liang W., Heinrich I., Simard S., Helle G., Linan I. D., Heinken T. 2013 — Climate signals derived from cell anatomy of Scots pine in NE Germany — Tree Physiol. 33: 833-844.
  • [28] Liang E., Shao X., Eckstein D., Huang L., Liu X. 2006 — Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau — Forest Ecol. Manag. 236: 268-277.
  • [29] Liang E., Shao X., Hu Y., Lin J. 2001 — Dendroclimatic evaluation of climate-growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi-arid grassland, north China — Trees, 15: 230-235.
  • [30] Liang E., Wang Y., Xu Y., Liu B., Shao X. 2010 — Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau — Trees, 24: 363-373.
  • [31] Liu L. 1996 — [Vegetation of Hebei Province] — Science Press Beijing, 364 pp. (in Chinese).
  • [32] Liu Y., Cai Q., Won-Kyu P., An Z., Ma L. 2003 — Tree-ring precipitation records from Baiyinaobao, Inner Mongolia since AD 1838 — Chin. Sci. Bull. 48: 1140-1145.
  • [33] Ma Z., Shangguan G. T. 2001 — [Vegetation of Shanxi Province] — Beijing: Science and Technology Press, 303 pp. (in Chinese).
  • [34] Marqués L., Camarero J. J., Gazol A., Zavala M. A. 2016 — Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions — Forest Ecol. Manag. 381: 157-167.
  • [35] Martin-Benito D., Beeckman H., Cañellas I. 2013 — Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest — Eur. J. Forest Res. 132: 33-45.
  • [36] Nabais C., Campelo F., Vieira J., Cherubini P. 2014 — Climatic signals of tree-ring width and intra-annual density fluctuations in Pinus pinaster and Pinus pinea along a latitudinal gradient in Portugal — Forestry, 87: 598-605.
  • [37] Nabuurs G., Pussinen A., Karjalainen T., Erhard M., Kramer K. 2002 — Stemwood volume increment changes in European forests due to climate change - a simulation study with the EFISCEN model — Glob. Change Biol. 8: 304-316.
  • [38] National Soil Survey Office 1995 — [Annals of Soil Species in China, Vol. 4] — Beijing, China Agriculture Press, 806 pp. (in Chinese).
  • [39] Pacheco A., Camarero J. J., Carrer M. 2016 — Linking wood anatomy and xylogenesis allows pinpointing of climate and drought influences on growth of coexisting conifers in continental Mediterranean climate — Tree Physiol. 36: 502-512.
  • [40] Pellizzari E., Camarero J. J., Gazol A., Sangüesa-Barreda G., Carrer M. 2016 — Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback -- Glob. Change Biol. 22: 2125-2137.
  • [41] Ponocná T., Spyt B., Kaczka R., Büntgen U., Treml V. 2016 — Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe — Trees, 30: 1633-1646.
  • [42] Rosell J. A., Olson M. E., Anfodillo T. 2017 — Scaling of Xylem Vessel Diameter with Plant Size: Causes, Predictions, and Outstanding Questions — Current Forestry Reports, 3: 46-59.
  • [43] Sass-Klaassen U., Fonti P., Cherubini P., Gričar J., Robert E. M. R., Steppe K., et al. 2016 — A Tree-Centered Approach to Assess Impacts of Extreme Climatic Events on Forests — Front. Plant Sci. 7: 1069.
  • [44] Seo J., Eckstein D., Jalkanen R. 2012 — Screening various variables of cellular anatomy of Scots pines in subarctic Finland for climatic signals — IAWA J, 33: 417-429.
  • [45] Shen C., Wang L., Li M. 2016 — The altitudinal variability and temporal instability of the climate-tree-ring growth relationships for Changbai larch (Larix olgensis Henry) in the Changbai mountains area, Jilin, Northeastern China — Trees, 30: 901-912.
  • [46] Sidor C. G., Popa I., Vlad R., Cherubini P. 2015 — Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania) — Trees, 29: 985-997.
  • [47] Sugden A., Smith J., Pennisi E. 2008 — The future of forests — Science, 320: 1435-1435.
  • [48] Szejner P., Wright W. E., Babst F., Belmecheri F., Trouet V., Leavitt S. W., Ehleringer J. R., Monson R. K. 2016 — Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System — J. Geophys. Res.-Biogeosci. 121: 1978-1991.
  • [49] Tyree M. T., Zimmermann M. H. 1983 — Xylem Structure and the Ascent of the Sap — Berlin Heildeberg New York, Springer-Verlag, 283 pp.
  • [50] Vaganov E. A., Hughes M. K., Shashkin A. V. 2006 — Growth Dynamics of Conifer Tree Rings — Berlin Heildeberg New York, Springer, 357 pp.
  • [51] Wang H., Shao X., Fang X., Jiang Y., Liu C., Qiao Q. 2017 — Relationships between tree-ring cell features of Pinus koraiensis and climate factors in the Changbai Mountains, Northeastern China — J. Forestry Res. 28: 105-114.
  • [52] Wilmking M., Juday G. P., Barber V. A., Zald H. J. 2004 — Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds — Glob. Chang Biol. 10: 1-13.
  • [53] Yin Z., Li M., Zhang Y., Shao X. 2016 — Growth-climate relationships along an elevation gradient on a southeast-facing mountain slope in the semi-arid eastern Qaidam Basin, northeastern Tibetan Plateau — Trees, 30: 1095-1109.
  • [54] Zhang, L., Jiang, Y., Zhao, S., Kang, X., Zhang, W., Liu, T. 2017 — Lingering response of radial growth of Picea crassifolia to climate at different altitudes in the Qilian Mountains, Northwest China — Trees, 31: 455-465.
  • [55] Zhang W., Jiang Y., Dong M., Kang M., Yang H. 2012 — Relationship between the radial growth of Picea meyeri and climate along elevations of the Luyashan Mountain in North-Central China — Forest Ecol. Manag. 265: 142-149.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37a6cf56-1e89-4bb6-bdd9-9f81d04f8337
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.