PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Classification of Land Quality Index Using Minimum Data Set – Study in a Tropical Agroecosystem of East Java

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to identify the factors influencing land quality in a tropical agroecosystem of Jember Regency, East Java, Indonesia, using a minimum data set approach. A principal component analysis (PCA) approach was employed to derive a minimum data set from various land parameters, including soil texture, bulk density, soil depth, pH, CEC, SOC, available P, available K, drainage, slope, surface rock, irrigation infrastructure, erosion hazard, flood hazard, annual temperature, and climate type. Data from 105 sampling locations were analysed to calculate the land quality index (LQI). The study found that six parameters significantly represent land quality: SOC (30.4%), effective soil depth (19.8%), available P (17.0%), available K (13.0%), erosion hazard (10.7%), and pH (8.9%). Long-term use of organic fertiliser can enhance land quality and prevent degradation. The study was limited to the Jember Regency and may not apply directly to other regions without adaptation. The findings can guide sustainable agricultural practices and land management in tropical regions, particularly in areas facing similar climatic and soil conditions. This study provides a quantitative assessment of land quality using a minimum data set in a tropical agroecosystem, filling a gap in the literature and offering a model for other regions to adopt.
Twórcy
  • Faculty of Agricultural Technology, University of Jember, Jl. Kalimantan No. 37, Kampus Bumi Tegalboto Kotak POS 159, Jember, Indonesia
  • Faculty of Agricultural Technology, University of Jember, Jl. Kalimantan No. 37, Kampus Bumi Tegalboto Kotak POS 159, Jember, Indonesia
  • Faculty of Agricultural Technology, University of Jember, Jl. Kalimantan No. 37, Kampus Bumi Tegalboto Kotak POS 159, Jember, Indonesia
Bibliografia
  • 1. Agegnehu, G., Amede, T., Erkossa, T., Yirga, C., Henry, C., Tyler, R., Nosworthy, M.G., Beyene, S., Sileshi, G.W. 2021. Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 71(9), 852–869. https://doi.org/10.1080/09064710.2021.1954239
  • 2. Alfarisy, F.K., Petrina, J.M., Andriyani, I., Adibowo, C. 2020. Typology of agricultural upstream area of watershed on intensive fertilizer behaviour on conservation of natural resources in Bedadung. IOP Conference Series: Earth and Environmental Science, 515(1). https://doi.org/10.1088/1755-1315/515/1/012039
  • 3. Banerjee, H., Ray, K., Dutta, S. K., Majumdar, K., Satyanarayana, T., Timsina, J. 2018. Optimising potassium application for hybrid rice (Oryza sativa L.) in coastal saline soils of West Bengal, India. Agronomy, 8(12), 1–14. https://doi.org/10.3390/agronomy8120292
  • 4. Bieganowski, A., Ryżak, M. 2011. Soil Texture: Measurement Methods BT - Encyclopedia of Agrophysics (J. Gliński, J. Horabik, J. Lipiec (eds.); 791–794). Springer Netherlands. https://doi.org/10.1007/978-90-481-3585-1_157
  • 5. BNPB. 2016. Disasters Risk of Indonesia. BNPB. 22.
  • 6. BPS-Statistics Indonesia. 2021. Harvested Area, Production, and Productivity of Paddy Based on Province 2019-2021. BPS-Statistics Indonesia.
  • 7. Budiyanto, A., Juarsah, I., Handayani, E.P. 2019. Improving land quality using organic fertilizers on soil properties for sustainable agriculture. Jurnal Wacana Pertanian, 14(2), 62. https://doi.org/10.37694/jwp.v14i2.31
  • 8. Chandel, S., Hadda, M.S., Mahal, A.K. 2018. Soil quality assessment through minimum data set under different land uses of Submontane Punjab. Communications in Soil Science and Plant Analysis, 49(6), 658–674. https://doi.org/10.1080/00103624.2018.1425424
  • 9. Clemente, P.R.A., Almeida, B.F.A. de, H. de A.B.,D., Silva, A.L.J., Silva, V.S.G. da, Endres, L. 2019. Morphological changes in sugarcane as a function of metallurgic slag and gypsum. Journal of Agricultural Science, 11(14), 291. https://doi.org/10.5539/jas.v11n14p291
  • 10. Edrisi, S.A., Tripathi, V., Abhilash, P.C. 2019. Performance analysis and soil quality indexing for Dalbergia sissoo Roxb. grown in marginal and degraded land of eastern Uttar Pradesh, India. Land, 8(63), 1–19. https://doi.org/10.3390/land8040063
  • 11. Eviati, Sulaeman. 2009. Chemical analysis of soil, plants, water and fertilizer. Balai Penelitian Tanah.
  • 12. Hadi, S.J., Tombul, M. 2018. Comparison of spatial interpolation methods of precipitation and temperature using multiple integration periods. In Journal of the Indian Society of Remote Sensing, 46(7), 1187– 1199. https://doi.org/10.1007/s12524-018-0783-1
  • 13. Han, S.H., Kim, S., Chang, H., Kim, H.J., An, J., Son, Y. 2021. Fine root biomass and production regarding root diameter in pinus densiflora and quercus serrata forests: Soil depth effects and the relationship with net primary production. Turkish Journal of Agriculture and Forestry, 45(1), 46–54. https://doi.org/10.3906/tar-1912-13
  • 14. Huang, H., Roy, D.P., Boschetti, L., Zhang, H.K., Yan, L., Kumar, S.S., Gomez-Dans, J., Li, J. 2016. Separability analysis of Sentinel-2A Multi-Spectral Instrument (MSI) data for burned area discrimination. Remote Sensing. 8(10), 1-18. https://doi.org/10.3390/rs8100873
  • 15. Indarto, I., Putra, B.T.W., Mandala, M. 2020. Using Sentinel-2A to identify the change in dry marginal agricultural land occupation. Journal of Water and Land Development, 47(1), 89–95. https://doi.org/10.24425/jwld.2020.135035
  • 16. Karapouloutidou, S., Gasparatos, D. 2019. Effects of biostimulant and organic amendment on soil properties and nutrient status of lactuca sativa in a calcareous saline-sodic soil. Agriculture (Switzerland), 9(8), 1–14. https://doi.org/10.3390/agriculture9080164
  • 17. Mandal, D., Roy, T., Kumar, G., Yadav, D. 2021. Loss of soil nutrients and financial prejudice of accelerated soil loss in India. Indian Journal of Fertilizer, 17(12), 1286–1295.
  • 18. Mandala, M., Indarto, I., Rodhi, N.N., Saputra, A.A., Hakim, F.L. 2024. Land use and land cover change in East Java from 2015 to 2021: Use optical imagery and Google Earth engine. Environmental & Socio-Economic Studies, 12(1), 69–80. https://doi.org/doi:10.2478/environ-2024-0007
  • 19. Mandanici, E., Bitelli, G. 2016. Preliminary comparison of sentinel-2 and landsat 8 imagery for a combined use. Remote Sensing. 8(12), 1–10. https://doi.org/10.3390/rs8121014
  • 20. Maulood, P., Darwesh, D., Maulood, P., Darwesh, D., Maulood, P., Darwesh, D. 2020. Soil quality index models for assessing walnut orchards in northern erbil province, Iraq. Polish Journal of Environmental Studies, 29(2), 1275–1285. https://doi.org/10.15244/pjoes/108686
  • 21. Mulyono, A., Suriadikusumah, A., Harriyanto, R., Djuwansah, M.R. 2019. Soil quality under agroforestry trees pattern in upper Citarum watershed, Indonesia. Journal of Ecological Engineering, 20(1), 203–213. https://doi.org/10.12911/22998993/93942
  • 22. Murphy, B.W. 2015. Impact of soil organic matter on soil properties—a review with emphasis on Australian soils. Soil Research, 53(6), 605–635.
  • 23. Mustikasari, N., Tarigan, S.D., Sabiham, S., Sahari, B. 2018. Surface flow, erosion and nutrient loss of oil palm estates, sorolangun regency, Jambi Provinc. Jurnal Ilmu Tanah Dan Lingkungan, 20(2), 82–85. https://doi.org/10.29244/jitl.20.2.82-85
  • 24. Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., Moradian, S. 2017. Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83, 482–494. https://doi.org/https://doi.org/10.1016/j.ecolind.2017.08.001
  • 25. Nagumo, T., Tajima, S., Chikushi, S., Yamashita, A. 2013. Phosphorus balance and soil phosphorus status in paddy rice fields with various fertiliser practices. Plant Production Science, 16(1), 69–76. https://doi.org/10.1626/pps.16.69
  • 26. Neina, D. 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019(3). https://doi.org/10.1155/2019/5794869
  • 27. Raiesi, F. 2017. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, 75, 307–320. https://doi.org/10.1016/j.ecolind.2016.12.049
  • 28. Ritung, S., Nugroho, K., Mulyani, A., Suryani, E. 2011. Land evaluation for agricultural commodities. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. https://doi.org/10.1039/c6qm00199h
  • 29. Senyigit, U., Kadayifci, A., Ozge Ozdemir, F., Oz, H., Atilgan, A. 2011. Effects of different irrigation programs on yield and quality parameters of eggplant (Solanum melongena L.) under greenhouse conditions. African Journal of Biotechnology, 10(34), 6497–6503. https://doi.org/10.5897/AJB10.2574
  • 30. Singh, R., Srivastava, P., Verma, P., Singh, P., Bhadouria, R., Singh, V.K., Singh, H., Raghubanshi, A.S. 2020. Exploring soil responses to various organic amendments under dry tropical agroecosystems: Climate Change and Soil Interactions. LTD. https://doi.org/10.1016/b978-0-12-818032-7.00021-7
  • 31. SNI 1964:2008. 2008. Indonesian National Standard How to test soil specific gravity. Badan Standardisasi Nasional.
  • 32. Sulieman, M., Saeed, I., Hassaballa, A., RodrigoComino, J. 2018. Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals. CATENA, 167, 327–339. https://doi.org/https://doi.org/10.1016/j.catena.2018.05.001
  • 33. Taghizadeh-Mehrjardi, R., Nabiollahi, K., Rasoli, L., Kerry, R., Scholten, T. 2020. Land suitability assessment and agricultural production sustainability using machine learning models. Agronomy, 10(4), 1–20. https://doi.org/10.3390/agronomy10040573
  • 34. Taslim, R.K., Mandala, M., Indarto. 2019. The effect of landuse on erosion rate: a study at several watersheds in Tapal Kuda Region, East Java. Jurnal Penelitian Pengelolaan Daerah Aliran Sungai, 3(2), 141–158.
  • 35. Triantafyllidis, V., Kosma, A.K.C., Patakas, A. 2018. An assessment of the soil quality index in a Mediterranean agro ecosystem. Emirates Journal of Food and Agriculture, 30(12), 1042–1050. https://doi.org/10.9755/ejfa.2018.v30.i12.1886
  • 36. Tunjung Sari, P., Indarto, I., Mandala, M. 2022. Soil Quality Index Mapping Using GIS and Sentinel-2 Image In Jember, East Java. Jurnal Presipitasi: Media Komunikasi Dan Pengembangan Teknik Lingkungan, 19(3), 566–577. https://ejournal.undip.ac.id/index.php/presipitasi/article/view/46643
  • 37. USDA. 2011. Soil survey laboratory information manual. Methods, 45, 167.
  • 38. Vasu, D., Singh, S.K., Ray, S.K., Duraisami, V.P., Tiwary, P., Chandran, P., Nimkar, A.M., Anantwar, S.G. 2016. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79. https://doi.org/https://doi.org/10.1016/j.geoderma.2016.07.010
  • 39. Werner, W.J., Sanderman, J., Melillo, J.M. 2020. Decreased soil organic matter in a long-term soil warming experiment lowers soil water holding capacity and affects soil thermal and hydrological buffering. Journal of Geophysical Research: Biogeosciences, 125(4), e2019JG005158. https://doi.org/https://doi.org/10.1029/2019JG005158
  • 40. Wischmeier, W.H., Smitch, D. 1987. Predicting Rainfall Erosion Loss. In U.S. Goverment Printing Office. U.S. Goverment Printing Office.
  • 41. Yang, Z.C., Zhao, N., Huang, F., Lv, Y.Z. 2015. Long-term effects of different organic and inorganic fertiliser treatments on soil organic carbon sequestration and crop yields on the North China Plain. Soil and Tillage Research, 146, 47–52. https://doi.org/https://doi.org/10.1016/j.still.2014.06.011
  • 42. Zhang, H.K., Roy, D.P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., Roger, J.C. 2018. Characterisation of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sensing of Environment, 215(15), 482–494. https://doi.org/10.1016/j.rse.2018.04.031
  • 43. Zhang, X., Li, Y., Wang, G., Zhang, H., Yu, R., Li, N., Zheng, J., Yu, Y. 2022. Soil quality assessment in farmland of a rapidly industrialising area in the Yangtze Delta, China. International Journal of Environmental Research and Public Health, 19(19). https://doi.org/10.3390/ijerph191912912
  • 44. Zhou, B., Chen, X., Wang, Q., Wei, W., Zhang, T. 2018. Effects of nano carbon on soil erosion and nutrient loss in a semi-arid loess region of Northwestern China. International Journal of Agricultural and Biological Engineering, 11(1), 138–145. https://doi.org/10.25165/j.ijabe.20181101.2775
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37a41817-cd86-4dab-8906-0aa90aab7d24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.