PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity analysis of stress/strain evolution on removal thickness in machining laser cladded workpiece with a novel FEM method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During subsequent machining of laser cladded workpiece, the stress transferred in depth direction is different from the conventional cast workpiece due to the geometrical discontinuity, resulting in the stress difference and strain discontinuity at the interface between the cladding layer and substrate. Distinguishing from the traditional finite element method model, this paper establishes a model with an inclined interface to investigate the thickness ratio, i.e., the ratio of the removal thickness in subsequent machining to cladding thickness on the machining-induced stress and strain. The results show that the maximum thickness ratio is 0.352 when the removal thickness is 0.1 mm. The change in interfacial shear stress energy dissipation due to interfacial inclination makes this result 22.8% lower than a traditional model with a horizontal interface. With the help of the presented model, the effect of removal thickness on machining-induced stress and strain evolution was investigated. The results show that an increase in the removal thickness will lead to an increase in machining-induced stress and strain. The stress difference and strain increment at the interface increase proportionally with the removal thickness, implying that variations in removal thickness will have a consequential impact on the maximum thickness ratio. Thus, the interaction of material removal thickness and thickness ratio on PEEQ increment at the interface was further analyzed. The response surface results indicate that an increase in the removal thickness leads to a corresponding increase in the maximum thickness ratio, albeit with a minor degree of influence. Therefore, the challenge of fixing the maximum thickness ratio in actual machining due to multi-step processes can be resolved through micro-adjustments. Simultaneously, in engineering applications, workpiece surface defects exhibit varying depths and require different removal amounts after cladding. This study provides further theoretical guidance for repairing and remanufacturing surface defects with diverse depths.
Rocznik
Strony
art. no. e53, 2024
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
  • Shandong Institute of Mechanical Design and Research, Jinan 250031, People’s Republic of China
  • School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
  • Shandong Institute of Mechanical Design and Research, Jinan 250031, People’s Republic of China
autor
  • School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
  • Shandong Institute of Mechanical Design and Research, Jinan 250031, People’s Republic of China
autor
  • School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
  • Shandong Institute of Mechanical Design and Research, Jinan 250031, People’s Republic of China
autor
  • School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
  • Shandong Institute of Mechanical Design and Research, Jinan 250031, People’s Republic of China
  • Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, People’s Republic of China
Bibliografia
  • 1. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371-92. https://doi.org/10.1016/j.actamat.2016.07.019.
  • 2. Vaithilingam J, Goodridge RD, Hague RJM, Christie SDR, Edmondson S. The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting. J Mater Process Technol. 2016;232:1-8. https://doi.org/10.1016/j.jmatprotec.2016.01.022.
  • 3. Liu J, Yu H, Chen C, Weng F, Dai J. Research and development status of laser cladding on magnesium alloys: a review. Opt Lasers Eng. 2017;93:195-210. https://doi.org/10.1016/j.optlaseng.2017.02.007.
  • 4. Zhang P, Liu Z. Machinability investigations on turning of Cr-Ni-based stainless steel cladding formed by laser cladding process. Int J Adv Manuf Technol. 2016;82:1707-14. https://doi.org/10.1007/s00170-015-7474-7.
  • 5. Flynn JM, Shokrani A, Newman ST, Dhokia V. Hybrid additive and subtractive machine tools - research and industrial developments. Int J Mach Tools Manuf. 2016;101:79-101. https://doi.org/10.1016/j.ijmachtools.2015.11.007.
  • 6. Nowicki B, Pierzynowski R, Spadło S. New possibilities of machining and electrodischarge alloying of free-form surfaces. J Mater Process Technol. 2001;109:371-6. https://doi.org/10.1016/S0924-0136(00)00828-1.
  • 7. Zhang P, Liu Z. Plastic deformation and critical condition for orthogonal machining two-layered materials with laser cladded Cr-Ni-based stainless steel onto AISI 1045. J Clean Prod. 2017;149:1033-44. https://doi.org/10.1016/j.jclepro.2017.02.167.
  • 8. Zhang P, Du J, Zhou T, Su G, Huang W, Liu Z. Sustainable manufacturing: re-contouring of laser cladding restored parts by machining method with cutting energy management. Arch Civ Mech Eng. 2020;20:42. https://doi.org/10.1007/s43452-020-00045-x.
  • 9. Wang CD, Wang CY, Chen M, Ming WW. Microstructures and machinability of the Inconel 182 overlays at different overlay thickness deposited by shield metal arc welding. Proc Inst Mech Eng Part B J Eng Manuf. 2015;231:1713-24. https://doi.org/10.1177/0954405415607817.
  • 10. Zhang P, Liu Z, Du J, Su G, Zhang J, Xu C. On machinability and surface integrity in subsequent machining of additively-manufactured thick coatings: a review. J Manuf Process. 2020;53:123-43. https://doi.org/10.1016/j.jmapro.2020.02.013.
  • 11. Lv T, Zhang P, Du J, Su G, Liu Z. On discontinuous stress and strain evolutions in machining of dissimilar laser cladded work-piece. J Manuf Process. 2023;102:985-99. https://doi.org/10.1016/j.jmapro.2023.08.017.
  • 12. Wang S, Qian Y, Feng Q, Guo F, Rizos D, Luo X. Investigating high rail side wear in urban transit track through numerical simulation and field monitoring. Wear. 2021;470-471:203643.https://doi.org/10.1016/j.wear.2021.203643.
  • 13. Ding H, Yang T, Wang W, Zhu Y, Lin Q, Guo J, et al. Optimization and wear behaviors of 316L stainless steel laser cladding on rail material. Wear. 2023;523: 204830. https://doi.org/10.1016/j.wear.2023.204830.
  • 14. Magel E, Mutton P, Ekberg A, Kapoor A. Rolling contact fatigue, wear and broken rail derailments. Wear. 2016;366-367:249-57. https://doi.org/10.1016/j.wear.2016.06.009.
  • 15. Singh R, Kumar D, Mishra SK, Tiwari SK. Laser cladding of Stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance. Surf Coat Technol. 2014;251:87-97. https://doi.org/10.1016/j.surfcoat.2014.04.008.
  • 16. Wang Q, Liu Z. Plastic deformation induced nano-scale twins in Ti-6Al-4V machined surface with high speed machining. Mater Sci Eng A. 2016;675:271-9. https://doi.org/10.1016/j.msea.2016.08.076.
  • 17. Chen Z, Qian L, Cui R, Liu J, Zhang Q. Machining-induced residual stress analysis and multi-objective optimization for milling process of Mg-Li alloy. Measurement. 2022;204: 112127. https://doi.org/10.1016/j.measurement.2022.112127.
  • 18. Cherif I, Outeiro J, Cotton D, Poulachon G, Charrondiere G, Brosse A. Effects of toolpath and clamping strategies in machining distortion of stainless-steel parts. Procedia CIRP. 2019;82:427-31. https://doi.org/10.1016/j.procir.2019.04.065.
  • 19. Masoudi S, Amini S, Saeidi E, Eslami-Chalander H. Effect of machining-induced residual stress on the distortion of thin-walled parts. Int J Adv Manuf Technol. 2015;76:597-608. https://doi.org/10.1007/s00170-014-6281-x.
  • 20. Zhen-yu Z, Qiu-yang Z, Cong D, Ju-yu Y, Zhong-yu P. Effect of surface burnishing process with different strain paths on the copper microstructure. J Manuf Process. 2021;71:653-68. https://doi.org/10.1016/j.jmapro.2021.09.058.
  • 21. Li Y, Cui X, Jin G, Cai Z, Tan N, Lu B, et al. Interfacial bonding properties between cobalt-based plasma cladding layer and substrate under tensile conditions. Mater Des. 2017;123:54-63. https://doi.org/10.1016/j.matdes.2017.03.035.
  • 22. Qin M, Cheng G, Li Q, Zhang J. Evolution of welding residual stresses within cladding and substrate during electroslag strip cladding. Materials. 2020. https://doi.org/10.3390/ma13184126.
  • 23. Cai Z, Ji H, Pei W, Tang X, Huang X, Liu J. Hot workability, constitutive model and processing map of 3Cr23Ni8Mn3N heat resistant steel. Vacuum. 2019;165:324-36. https://doi.org/10.1016/j.vacuum.2019.04.041.
  • 24. Yang Y, Li M, Li KR. Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component. Int J Adv Manuf Technol. 2014;70:1803-11. https://doi.org/10.1007/s00170-013-5431-x.
  • 25. Zheng J-Y, Voyle R, Tang HP, Mannion A. Study of distortion on milled thin-wall aluminum parts influenced by initial residual stress and toolpath strategy. Int J Adv Manuf Technol. 2023;127:237-51. https://doi.org/10.1007/s00170-023-11519-6.
  • 26. Zhang Z, Li L, Yang Y, He N, Zhao W. Machining distortion minimization for the manufacturing of aeronautical structure. Int J Adv Manuf Technol. 2014;73:1765-73. https://doi.org/10.1007/s00170-014-5994-1.
  • 27. Jafarian F, Imaz Ciaran M, Umbrello D, Arrazola PJ, Filice L, Amirabadi H. Finite element simulation of machining Inconel 718 alloy including microstructure changes. Int J Mech Sci. 2014;88:110-21. https://doi.org/10.1016/j.ijmecsci.2014.08.007.
  • 28. Jafarian F, Umbrello D, Jabbaripour B. Identification of new material model for machining simulation of Inconel 718 alloy and the effect of tool edge geometry on microstructure changes. Simul Model Pract Theory. 2016;66:273-84. https://doi.org/10.1016/j.simpat.2016.05.001.
  • 29. Hao Z, Li J, Fan Y, Ji F. Study on constitutive model and deformation mechanism in high speed cutting Inconel718. Arch Civ Mech Eng. 2019;19:439-52. https://doi.org/10.1016/j.acme.2018.11.009.
  • 30. DeMange JJ, Prakash V, Pereira JM. Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy. Int J Impact Eng. 2009;36:1027-43. https://doi.org/10.1016/j.ijimpeng.2009.01.007.
  • 31. Uysal A, Jawahir IS. Validation of the slip-line model for serrated chip formation in orthogonal turning under dry and MQL conditions. Procedia CIRP. 2019;82:124-9. https://doi.org/10.1016/j.procir.2019.04.006.
  • 32. Yang H, Sinha SK, Feng Y, McCallen DB, Jeremić B. Energy dissipation analysis of elastic-plastic materials. Comput Methods Appl Mech Eng. 2018;331:309-26. https://doi.org/10.1016/j.cma.2017.11.009.
  • 33. Liu S, Azad AI, Burgueno R. Architected materials for tailor-able shear behavior with energy dissipation. Extreme Mech Lett. 2019;28:1-7. https://doi.org/10.1016/j.eml.2019.01.010.
  • 34. Jabłońska MB. Effect of the conversion of the plastic deformation work to heat on the behaviour of TWIP steels: a review. Arch Civ Mech Eng. 2023;23:135. https://doi.org/10.1007/s43452-023-00656-0.
  • 35. Zhang H, Zeng H, Yan R, Wang W, Peng F. Analytical modeling of cutting forces considering material softening effect in laser-assisted milling of AerMet100 steel. Int J Adv Manuf Technol. 2021;113:247-60. https://doi.org/10.1007/s00170-020-06518-w.
  • 36. Zhang D, Zhang X-M, Nie G-C, Yang Z-Y, Ding H. Characterization of material strain and thermal softening effects in the cutting process. Int J Mach Tools Manuf. 2021;160: 103672. https://doi.org/10.1016/j.ijmachtools.2020.103672.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37a040bc-06ec-45bd-8ed1-5558fe888dbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.