Tytuł artykułu
Identyfikatory
Warianty tytułu
Wpływ obróbki cieplnej na zmęczenie niskocyklowe stali austenitycznej w warunkach pracy elementów wylotowych turbin gazowych
Języki publikacji
Abstrakty
The paper presents a statistical analysis based on more than 500 fatigue tests available in the scientific literature, for which the influence of thermal treatment of austenitic steel on the low-cycle life of gas turbine exhaust elements is shown. The confidence range of regression parameters for test data is shown and an analysis of variance for different groups of parameters was carried out. Conducted statistical analysis allows to select important parameters affecting the life of the material, while allowing to reject non-essential parameters, which in effect allows correct description of the phenomenon. The collected data from fatigue tests was limited to those whose parameters correspond to the typical work conditions of gas turbine exhaust elements. The tested material is austenitic steel type AISI240 TP304 in various states of heat treatment: aging, tempering and in an as-fabricated condition. The tests were carried out in isothermal conditions with a fast-changing cycle or a cycle with tensile load hold during stretching.
W pracy zaprezentowano analizę statystyczną wykonaną na podstawie ponad 500 wyników prób zmęczeniowych dostępnych w literaturze naukowej, dla których pokazano wpływ obróbki cieplnej stali austenitycznej na trwałość niskocyklową stali austenitycznej. Przeprowadzono analizę regresji dla zgromadzonych danych oraz analizę wariancji dla różnych grup parametrów obróbki cieplnej. Przeprowadzona analiza statystyczna pozwala na wyselekcjonowanie istotnych parametrów wpływających na trwałość materiału, pozwalając jednocześnie odrzucić parametry nieistotne, co w efekcie pozwala na poprawne opisanie zjawiska. W pracy ograniczono użyte dane do odpowiadających typowym parametrom pracy elementów odprowadzających spaliny w turbinach gazowych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
111--119
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
autor
- Warsaw University of Technology, Warsaw
autor
- Warsaw University of Technology, Warsaw
autor
- Warsaw University of Technology, Warsaw
Bibliografia
- [1] Faghihi D., Sarkar S., Naderi M., Rankin J. E., Hackel L., Iyyer N.:A probabilistic design method for fatigue life of metallic component.ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 4 (3)(2017) 31005÷31011.
- [2] Hales R., Holdsworth S. R., O’Donnell M. P., Perrin I. J., Skelton R. P.:A code of practice for the determination of cyclic stress-strain data. Mater.High Temp. 19 (4) (2002) 165÷185.
- [3] Weeks R. W., Diercks D. R., Cheng C. F.: ANL low-cycle fatigue studiesprogram,results and analysis. ANL-8009, Argonne Natl. Lab. 111 (1973).
- [4] Hill M. R.: Mechanical properties test data for structural materials. Quarterlyprogress report for period ending October 31, 1976, United States(1976).
- [5] ASTM: ASTM A240: Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and forgeneral applications. ASTM Int. (2004).
- [6] Committee A. I. H.: ASM Handbook, Volume 4: Heat treating. ASM International(1991).
- [7] Krauss G.: STEELS – Processing, structure, and performance. ASM International(2005).
- [8] Cheng C., Cheng C., Diercks D., Weeks R.: Low-cycle fatigue behaviorof types 304 and 316 stainless steel at LMFBR operating temperature. [in]Fatigue at Elevated Temperatures (1972) 355÷364.
- [9] Byun T. S., Lach T. G.: Mechanical properties of 304L and 316L austeniticstainless steels after thermal aging for 1500 hours. U.S. Depart of Energy(2016).
- [10] Brinkman C. R., Korth G. E.: Heat-to-heat variations in the fatigue andcreep-fatigue behavior of AISI type 304 stainless steel at 593°C. J. Press.Vesel Technol. 96 (1975) 243.
- [11] Maiya P. S.: Discussion: “Heat-to-heat variation in creep properties oftypes 304 and 316 stainless steels” (Sikka V. K., McCoy Jr. H. E., BookerM. K., Brinkman C. R., 1975, ASME J. Pressure Vessel Technol. 97243÷251), J. Press. Vessel Technol. 98 (1) (2010) 85.
- [12] Brinkman C., Korth G., Beeston J.: influence of irradiation on the creep/fatigue behavior of several austenitic stainless steels and Incoloy 800 at700 C. Effects of Radiation on Substructure and Mechanical Properties ofMetals and Alloys, ASTM International (1972) 473.
- [13] Claudson T. T.: Irradiation effects on reactor structural materials. Semi-annualprogress report, August 1974 – February 1975., United States (1975).
- [14] Kuwabara K., Nitta A.: Effect of strain hold-time of high temperature onthermal fatigue behavior of type 304 stainless steel. ASME – MPC Symposiumon Creep-Fatigue Interaction (1976) 161÷177.
- [15] Kuwabara K., Nitta A.: Thermal fatigue behavior and strength estimationof power plant component materials under creep-fatigue interaction — Experimentsand analysis on type 304 stainless steel. Rep. E278003, Cent.Res. Inst. Electr. Power Ind. Tokyo, Japan (1978).
- [16] Diercks D. R., Maiya P. S.: Argonne National Laboratory. Unpublisheddata.
- [17] Conway J. B., Stentz R. H., Berling J. T.: Fatigue, tensile, and relaxationbehavior of stainless steels. University of Cincinaty, United States (1975).
- [18] Korth G. E., Harper M. D.: Effects of neutron radiation on the fatigue andcreep/fatigue behavior of Type 308 stainless steel weld metal at elevatedtemperatures. ASTM International Symposium on Effects of Radiation onStructural Materials, United States (1974).
- [19] Keller D. L.: Progress on lmfbr cladding, structural, and component materialsstudies during july 1970 through june 1971. Annual report, task 32.Final report, task 14, United States (1971).
- [20] Diercks D. R., Raske D. T.: Elevated-temperature, strain-controlled fatiguedata on type 304 stainless steel. A compilation, multiple linear regressionmodel, and statistical analysis. Office of Scientific and TechnicalInformation, U.S. Department of Energy (1976).
- [21] Claudson T. T.: Irradiation effects on reactor structural materials. Semiannualprogress report, February – July 1974. Hanford Engineering DevelopmentLaboratory, United States (1974).
- [22] Majumdar S., Maiya P. S.: A unified and mechanistic approach to creepfatiguedamage. Aragonne National Laboratory (1976).
- [23] Diercks D. R.: Application of strain range partitioning to the prediction ofelevated-temperature, low-cycle fatigue life for type 304 stainless steel.,Adv Des Elev. Temp. Environ. Natl. Congr. Press. Vessel. Piping, 2nd,(1975).
- [24] Manson S. S.: Thermal stress and low-cycle fatigue. New York: McGraw-Hill (1966).
- [25] Tattar P. N., Ramaiah S., Manjunath B. G.: A course in statistics with R.John Wiley & Sons, Ltd. (2016).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-379b2fb9-6361-46d1-b82f-70fdb820efdf