PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three Universal Homogeneous Spiking Neural P Systems Using Max Spike

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We improve and extend a recent result showing that spiking neural P systems with the same rules in all neurons of the system (homogenous) and working in the max sequential manner are universal. The previous work in this area reported by the group led by Dr. Linqiang Pan did not put any bound on the number of neurons used. We believe this is an important question for any future practical implementation of such systems that deserves investigation, and we provide some results in this direction. Extending the aforementioned construction with the work of Korec on small register machines one could estimate the size of the previous construction at 105 neurons. We are able to improve this result and to show that an SNP system with 83 neurons having homogenous rules and working in the max sequential manner is universal. Several related results with respect to max-pseudo sequentiality mode are also obtained: 83 neurons are necessary for this case, too. When considering the case of systems without weighted synapses, we show that one needs at most 244 homogenous neurons for reaching universality in the max-pseudo sequentiality case.
Wydawca
Rocznik
Strony
167--182
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Department of Computer Science, Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei nr.14, sector 1, C.P. 010014, Bucuresti, Romania
autor
  • Research Institute of the IT4 Innovations Centre of Excellence, Faculty of Philosophy and Science Silesian, University in Opava, 74601 Opava, Czech Republic
Bibliografia
  • [1] G. Bugnicourt, J. Brocard, A. Nicolas, C. Villard, Catherine: Nanoscale surface topography reshapes neuronal growth in culture, Langmuir, 2014, in press.
  • [2] W. Gerstner, W Kistler: Spiking neuron models. Single neurons, populations, plasticity. Cambridge Univ. Press, 2002.
  • [3] O. H. Ibarra, A. Păun, A. Rodriguez-Paton, Sequential SNP systems based on min/max spike number, Theoretical Computer Science, 410(30-32), (2009), 2982–2991.
  • [4] O. H. Ibarra, A. Păun, A. Rodriguez-Paton, Sequentiality induced by spike number in SNP systems, Proceedings of DNA Computing conference 2008, also Lecture Notes in Computer Science, Volume 5347, (2009), 179–190.
  • [5] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Informaticae, 71 (2-3), (2006), 279–308.
  • [6] K. Jiang, T. Song, W. Chen, L. Pan: Homogeneous spiking neural P systems working in sequential mode induced by maximum spike number, International Journal of Computer Mathematics, 90 (4), (2013), 831–844.
  • [7] I. Korec, Small universal register machines, Theoretical Computer Science, 168, (1996), 267–301.
  • [8] W. Maass: Computing with spikes. Special Issue on Foundations of Information Processing of TELEMATIK, 8, 1, (2002), 32–36.
  • [9] W. Maass, C. Bishop, eds.: Pulsed neural networks, MIT Press, Cambridge, 1999.
  • [10] M. Minsky: Computation – Finite and infinite machines. Prentice Hall, Englewood Cliffs, NJ, 1967.
  • [11] Y. Liu, R. Nassar, C. Leangsuksun, et al.: An optimal checkpoint/restart model for a large scale High Performance Computing system. IEEE Int. Symposium on Parallel and Distributed Processing 2008, 1–9.
  • [12] A. Păun, Gh. Păun, Small universal spiking neural P systems, BioSystems, 90(1), (2007), 48–60.
  • [13] A. Păun, M. Sidoroff: Sequentiality induced by spike number in SNP systems: small universal machines, Conference on Membrane Computing, Lecture Notes in Computer Science, Volume 7184, (2012), 333–345.
  • [14] Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
  • [15] Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P systems, International Journal of Foundations of Computer Science, 17 (4), (2006), 975–1002.
  • [16] G. Piret, M. Perez, C. Prinz: Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture, Biomaterials, 34 (4), (2013), 875–887.
  • [17] T. Neary: On the computational complexity of spiking neural P systems, Natural Computing, 9 (4), (2010), 831-851.
  • [18] C. Riggio, M. P. Calatayud, M. Giannaccini, B. Sanz, T. E. Torres, R. Fernndez-Pacheco, A. Ripoli et al.: The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field, Nanomedicine: Nanotechnology, Biology and Medicine, (2014) in press.
  • [19] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes. Springer-Verlag, Berlin, 1997.
  • [20] B.M. Strimbu, J.L. Innes, V.F. Strimbu, A deterministic harvest scheduler using perfect bin-packing theorem. European Journal of Forest Research, 129-5, (2010), 961–974.
  • [21] B.M. Strimbu, J.L. Innes, An analytical platform for cumulative impact assessment based on multiple futures: the impact of petroleum drilling and forest harvesting on moose (Alces alces) and marten (Martes americana) habitats in northeastern British Columbia, Journal of Environmental Management, 92 (7), (2011), 1740–1752.
  • [22] X. Zeng, X. Zhang and L. Pan: Homogeneous spiking neural P systems, Fundamenta Informaticae, 97, (2009), 1–20.
  • [23] X. Zhang, X. Zeng, and L. Pan: Smaller universal spiking neural P systems, Fundamenta Informaticae, 87 (1), (2008), 117–136.
  • [24] X. Zhang, Y. Jiang and L. Pan: Small universal spiking neural P systems with exhaustive use of rules, Journal of Computational and Theoretical Nanoscience, 7 (5), (2010), 890–899.
  • [25] The P Systems Web Page: http://ppage.psystems.eu.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3799f6d2-ab34-4dc1-a741-421e83884d71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.