PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature induced development of porous structure of bituminous coal chars at high pressure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The porous structure of chars affects their reactivity in gasification, having an impact on the course and product distribution of the process. The shape, size and connections between pores determine the mechanical properties of chars, as well as heat and mass transport in thermochemical processing. In the study the combined effects of temperature in the range of 973e1273 _K and elevated pressure of 3 MPa on the development of porous structure of bituminous coal chars were investigated. Relatively low heating rate and long residence time characteristic for the in-situ coal conversion were applied. The increase in the temperature to 1173 _K under pressurized conditions resulted in the enhancement of porous structure development reflected in the values of the specific surface area, total pore volume, micropore area and volume, as well as ratio of the micropore volume to the total pore volume. These effects were attributed to the enhanced vaporization and devolatilization, as well as swelling behavior along the increase of temperature and under high pressure, followed by a collapse of pores over certain temperature value. This proves the strong dependence of the porous structure of chars not only on the pyrolysis process conditions but also on the physical and chemical properties of the parent fuel.
Rocznik
Strony
120--124
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Central Mining Institute, Department of Energy Saving and Air Protection, Pl. Gwark_ow 1, 40-166 Katowice, Poland
Bibliografia
  • 1. Acevedo, B., & Barriocanal, C. (2015). The influence of the pyrolysis conditions in a rotary oven on the characteristics of the products. Fuel Process Technol, 131, 109-116.
  • 2. Bell, D. A., Towler, B. F., & Fan, M. (2011). Coal gasification and its applications. Oxford: Elsevier.
  • 3. Benfell, K. E., Liu, G., Roberts, D. G., Harris, D. J., Lucas, J. A., & Bailey, J. G. (2000). Modelling char combustion: The influence of parent coal petrography and pyrolysis pressure on the structure and intrinsic reactivity of its char. P Combust Inst, 28, 2233-2241.
  • 4. de Boer, J. H., Linsen, B. G., van der Plas, Th, & Zondervan, G. J. (1965). Studies on pore systems in catalysts: VII. Description of the pore dimensions of carbon blacks by the t method. J Catalysis, 4, 649-653.
  • 5. Burton, E., Friedman, J., & Upadhye, R. (2006). Best practices in underground coal gasification. Lawrence Livermore National Laboratory. DOE Contract No. W-7405-Eng-48.
  • 6. Cai, H. Y., Güell, A. J., Chatzakis, I. N., Lim, J. Y., Dugwell, D. R., & Kandiyoti, R. (1996). Combustion reactivity and morphological change in coal chars: Effect of pyrolysis temperature, heating rate and pressure. Fuel, 75, 15-24.
  • 7. Fatemi, M. (1987). Effect of pressure on pyrolysis of a sub-bituminous coal in an entrained-flow reactor. Am Chem Soc Div Fuel Chem, 32, 117-124.
  • 8. Fukuyama, H., & Terai, S. (2008). Preparing and characterizing the active carbon produced by steam and carbon dioxide as a heavy oil hydrocracking catalyst support. Catal Today, 130, 382-388.
  • 9. Griffin, T. P., Howard, J. B., & Peters, W. A. (1994). Pressure and temperature effects in bituminous coal pyrolysis: Experimental observations and a transient lumped-parameter model. Fuel, 73, 591-601.
  • 10. Hori, M., Matsui, K., Tashimo, M., & Yasuda, I. (2005). Synergistic hydrogen production by nuclear-heated steam reforming of fossil fuels. Prog Nucl Energ, 47, 519-526.
  • 11. Howaniec, N. (2016a). The effects of pressure on coal chars porous structure development. Fuel, 172, 118-123.
  • 12. Howaniec, N. (2016b). Development of porous structure of lignite chars at high pressure and temperature. Fuel Process Technol, 154, 163-167.
  • 13. Howaniec, N., & Smoliński, A. (2013). Steam co-gasification of coal and biomasseSynergy in reactivity of fuel blends chars. Int J Hydrogen Energy, 38, 16152-16160.
  • 14. Howaniec, N., & Smoliński, A. (2014a). Influence of fuel blend ash components on steam co-gasification of coal and biomass - chemometric study. Energy, 78, 814-825.
  • 15. Howaniec, N., & Smoliński, A. (2014b). Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel, 128, 442-450.
  • 16. Howaniec, N., Smoliński, A., & Cempa-Balewicz, M. (2015). Experimental study on application of high temperature reactor excess heat in the process of coal and biomass co-gasification to hydrogen-rich gas. Energy, 84, 455-461.
  • 17. Khan, M. R., & Jenkins, R. G. (1986). Swelling and plastic properties of coal devolatilized at elevated pressures: An examination of the influence of coal type. Fuel, 65, 725-731.
  • 18. Kopac, T., & Toprak, A. (2007). Preparation of activated carbons from Zonguldak region coals by physical and chemical activations for hydrogen sorption. Int J Hydrogen Energy, 32, 5005-5014.
  • 19. Kostúr, K., Laciak, M., Durd_an, M., Kacur, J., & Flegner, P. (2015). Low-calorific gasification of underground coal with a higher humidity. Measurement, 63, 69-80.
  • 20. Lee, C. W., Jenkins, R. G., & Schobert, H. H. (1992). Structure and reactivity of char from elevated pressure pyrolysis of Illinois no. 6 bituminous coal. Energ Fuel, 6, 40-47.
  • 21. Lee, C. W., Scaroni, A. W., & Jenkins, R. G. (1991). Effect of pressure on the behavior of a softening coal during rapid heating. Fuel, 70, 957-965.
  • 22. Liu, T. F., Fang, Y. T., & Wang, Y. (2008). An experimental investigation into the gasification reactivity of chars prepared at high temperatures. Fuel, 87, 460-466.
  • 23. Mahinpey, N., & Gomez, A. (2016). Review of gasification fundamentals and new findings: Reactors, feedstock, and kinetic studies. Chem Eng Sci, 148, 14-31.
  • 24. Nassini, D., Fouga, G. G., Nassini, H. E., & Boh_e, A. E. (2016). Effects of pyrolysis conditions on the structure of chars prepared from an Argentine asphaltite. Fuel, 182, 623-631.
  • 25. Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., et al. (1994). Recommendations for the characterization of porous solids. Pure Appl Chem, 66(8), 1739-1758.
  • 26. Rouquerol, F., Rouquerol, J., Sing, K. S. W., Llewellyn, P., & Maurin, G. (2014). Adsorption by powders and porous solids. Principles, Methodology and Applications (2nd ed.). Oxfrod: Academic Press, Elsevier.
  • 27. Smoliński, A., & Howaniec, N. (2016). Co-gasification of coal/sewage sludge blends to hydrogen-rich gas with the application of simulated high temperature reactor excess heat. Int J Hydrogen Energy, 41(19), 8154-8158.
  • 28. Solomon, P. R., & Fletcher, T. H. (1994). Impact of coal pyrolysis on combustion. Symp Int Combust, 25, 463-474.
  • 29. Tremel, A., Haselsteiner, T., Nakonz, M., & Spliethoff, H. (2012). Coal and char properties in high temperature entrained flow gasifier. Energy, 45, 176-182.
  • 30. Trubetskaya, A., Jensen, P. A., Jensen, A. D., Llamas, A. D. G., Umeki, K., & Glarborg, P. (2016). Effect of fast pyrolysis conditions on biomass solid residues at high temperatures. Fuel Process Technol, 143, 118-129.
  • 31. Uguna, C. N., Carr, A. D., Snape, C. E., & Meredith, W. (2015). High pressure water pyrolysis of coal to evaluate the role of pressure on hydrocarbon generation and source rock maturation at high maturities under geological conditions. Org Geochem, 78, 44-51.
  • 32. Wall, T. F., Liu, G., Wu, H., Roberts, D. G., Benfell, K. E., Gupta, S., et al. (2002). The effects of pressure on coal reactions during pulverised coal combustion and gasification. Prog Energy Combust, 28, 405-433.
  • 33. Wu, H., Bryant, G. W., Benfell, K. E., & Wall, T. F. (2000). An experimental study on the effect of system pressure on char structure of an Australian bituminous coal. Energ Fuel, 14, 282-290.
  • 34. Xiumin, J., Chuguang, Z., Che, Y., Dechang, L., Jianrong, Q., & Jubin, L. (2002). Physical structure and combustion properties of super fine pulverized coal particle. Fuel, 81, 793-797.
  • 35. Yangsheng, Z., Fang, Q., Zhijun, W., Yuan, Z., Weiguo, L., & Qiaorong, M. (2010). Experimental investigation on correlation between permeability variation and pores structure during coal pyrolysis. Transport Porous Med, 82, 401-412.
  • 36. Yu, Y., Xu, M., Yao, H., Yu, D., Qiao, Y., Sui, J., et al. (2007). Char characteristics and particulate matter formation during Chinese bituminous coal combustion. P Combust Inst, 31, 1947-1954.
  • 37. Yu, D., Xu, M., Yu, Y., & Liu, X. (2005). Swelling behavior of a Chinese bituminous coal at different pyrolysis temperatures. Energ Fuel, 19, 2488-2494.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3799db88-7a2f-4e2f-8b2c-59efc8cb25d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.